Math, asked by amaan778, 1 year ago

The distance of the point A(-2,3) from the line 12x-5y-13=0​

Answers

Answered by LeonardEuler
11

Hello !!

For you answer this question, you only need make use of this formula.

\mathsf{d=\dfrac{|ax_{0}+by_{0}+c|}{\sqrt{(a^{2}+b^{2})}}}

Now, you put the informations of the statement in the formula and find the result.

\mathsf{d=\dfrac{|ax_{0}+by_{0}+c|}{\sqrt{(a^{2}+b^{2})}}} \\\\\\ \mathsf{d=\dfrac{|12(-2)-5(3)-13|}{\sqrt{(12^{2}+5^{2})}}} \\\\\\ \mathsf{d=\dfrac{|-24-15-13|}{\sqrt{(144+25)}}} \\\\\\ \mathsf{d=\dfrac{|-52|}{\sqrt{169}}} \\\\\\ \mathsf{d=\dfrac{|-52|}{13}} \\\\\\ \mathsf{d=\dfrac{52}{13}} \\\\\\ \boxed{\mathsf{\bf\red{d=4}}}

Final result : 4 uc.

I hope I have collaborated !

Answered by pinquancaro
11

The distance of the point A(-2,3) from the line 12x-5y-13=0 is 4 unit.

Step-by-step explanation:

To find : The distance of the point A(-2,3) from the line 12x-5y-13=0?

Solution :

The distance between a point (x_0,y_0) from the line ax+by+c=0 is given by,

d=\dfrac{|ax_{0}+by_{0}+c|}{\sqrt{(a^{2}+b^{2})}}}

On comparing, x_0=-2,y_0=3,a=12,b=-5 and c=-13

Substitute the value,

d=\dfrac{|12(-2)-5(3)-13|}{\sqrt{(12)^{2}+(5)^{2}}}

d=\dfrac{|-24-15-13|}{\sqrt{144+25}}

d=\dfrac{|-52|}{\sqrt{169}}

d=\dfrac{|-52|}{13}

d=\dfrac{52}{13}

d=4

Therefore, the distance of the point A(-2,3) from the line 12x-5y-13=0 is 4 unit.

#Learn more

The distance between the points (2,3)and(4,1)is

https://brainly.in/question/15112033

Similar questions