Physics, asked by Anonymous, 1 month ago

The distances of two planets from the sun are 10¹³ and 10¹² metre respectively. Find the ratio of time periods and speed of two planets.​

Answers

Answered by Anonymous
2

\large \underline{\underline{\bf{ \pink{Given : }}}}

 \\

✧ Distance of one planet from the Sun,  \sf r_1= 10^{13} m

✧ Distance of second planet from the Sun,  \sf r_2= 10^{12} m

 \\

\large \underline{\underline{\bf{ \pink{To \: Find :}} }}

 \\

✧ Ratio of time periods of two planets,  \sf \dfrac{T_1}{T_2}=?

✧ Ratio of speed of two planets,  \sf \dfrac{v_1}{v_2}=?

 \\

\large \underline{\underline{\bf{ \pink{Solution : }}}}

 \\

Now, We know that :

 \dag \underline{\boxed{\pink{\bf \dfrac{T_1 ^2}{T_2 ^2} = \dfrac{r_1 ^3}{r_2 ^3}}}}

 \\

 \sf : \implies \dfrac{T_1}{T_2} =\Bigg( \dfrac{r_1}{r_2}\Bigg)^{\frac{3}{2}}

 \\

By substituting values :

 \sf : \implies \dfrac{T_1}{T_2} = \Bigg( \dfrac{10^{13}}{10^{12}}\Bigg)^{\frac{3}{2}}

 \sf : \implies \dfrac{T_1}{T_2} = (10)^{\frac{3}{2}}

 \sf : \implies \dfrac{T_1}{T_2} =\sqrt{10^3}

 \sf : \implies \dfrac{T_1}{T_2} =10\sqrt{10}

 \\

\underline{\boxed{\pink{\bf \dfrac{T_1}{T_2} = 10\sqrt{10}}}}

 \\

Now,

 \dag \underline{\boxed{\pink{\bf v = \dfrac{2\pi r}{T}}}}

 \\

 \sf : \implies \dfrac{v_1}{v_2}= \dfrac{\dfrac{2\pi r_1}{T_1}}{\dfrac{2\pi r_2}{T_2}}

 \sf : \implies \dfrac{v_1}{v_2}= \dfrac{\cancel{2\pi} r_1}{T_1} \times \dfrac{T_2}{\cancel{2\pi} r_2}

 \sf : \implies \dfrac{v_1}{v_2}= \dfrac{r_1}{T_1} \times \dfrac{T_2}{r_2}

 \\

By substituting values :

 \sf : \implies \dfrac{v_1}{v_2}= \dfrac{10^{13}}{T_1} \times \dfrac{T_2}{10^{12}}

 \sf : \implies \dfrac{v_1}{v_2}= \dfrac{10 \times T_2}{T_1}

 \sf : \implies \dfrac{v_1}{v_2}=10\times \dfrac{ T_2}{T_1}

 \sf : \implies \dfrac{v_1}{v_2}=10\times \dfrac{1}{10\sqrt{10}}

 \sf : \implies \dfrac{v_1}{v_2}=\dfrac{1}{\sqrt{10}}

 \\

\underline{\boxed{\pink{\bf \dfrac{v_1}{v_2}=\dfrac{1}{\sqrt{10}}}}}

Similar questions