Math, asked by oeocfkfoslv, 12 hours ago

the domain and range of the function​

Attachments:

Answers

Answered by mathdude500
5

Given Question

Find the domain and range of the function

\rm :\longmapsto\:y =  \sqrt{ {x}^{2}  - 4}

 \red{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:y =  \sqrt{ {x}^{2}  - 4}

We know

Domain of a function is defined as set of those real values of x for which function is well defined.

So, y is defined when

\rm :\longmapsto\: {x}^{2} - 4 \geqslant 0

\rm :\longmapsto\: {x}^{2} -  {2}^{2}  \geqslant 0

\rm :\longmapsto\: (x - 2)(x + 2)  \geqslant 0

\rm\implies \:x \leqslant  - 2 \:  \: or \:  \: x \geqslant 2

\rm\implies \:x \:  \in \: ( -  \infty ,  \: - 2] \:  \cup \: [2, \:  \infty )

Now, To find the range of function

We know,

Range of a function is defined as set of those real values which is obtained by assigning the values to x.

So,

\rm :\longmapsto\:y =  \sqrt{ {x}^{2}  - 4}

On squaring both sides, we get

\rm :\longmapsto\: {y}^{2} =  {x}^{2} - 4

\rm :\longmapsto\: {y}^{2}  + 4=  {x}^{2}

\rm :\longmapsto\:x =  \sqrt{ {y}^{2} + 4 }

Now, x is defined when

\rm :\longmapsto\: {y}^{2} + 4 \geqslant 0 \: which \: is \: always \: true \:  \forall \: y \in \: real \: number

But,

\rm :\longmapsto\:y \geqslant 0

Hence,

\rm\implies \:Range \: of \: function \:  = [0, \:  \infty )

So, we have

\rm\implies \:Domain \: of \: function : x \:  \in \: ( -  \infty ,  \: - 2] \:  \cup \: [2, \:  \infty )

and

\rm\implies \:Range \: of \: function \:  = [0, \:  \infty )

Answered by EmperorSoul
0

Given Question

Find the domain and range of the function

\rm :\longmapsto\:y =  \sqrt{ {x}^{2}  - 4}

 \red{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:y =  \sqrt{ {x}^{2}  - 4}

We know

Domain of a function is defined as set of those real values of x for which function is well defined.

So, y is defined when

\rm :\longmapsto\: {x}^{2} - 4 \geqslant 0

\rm :\longmapsto\: {x}^{2} -  {2}^{2}  \geqslant 0

\rm :\longmapsto\: (x - 2)(x + 2)  \geqslant 0

\rm\implies \:x \leqslant  - 2 \:  \: or \:  \: x \geqslant 2

\rm\implies \:x \:  \in \: ( -  \infty ,  \: - 2] \:  \cup \: [2, \:  \infty )

Now, To find the range of function

We know,

Range of a function is defined as set of those real values which is obtained by assigning the values to x.

So,

\rm :\longmapsto\:y =  \sqrt{ {x}^{2}  - 4}

On squaring both sides, we get

\rm :\longmapsto\: {y}^{2} =  {x}^{2} - 4

\rm :\longmapsto\: {y}^{2}  + 4=  {x}^{2}

\rm :\longmapsto\:x =  \sqrt{ {y}^{2} + 4 }

Now, x is defined when

\rm :\longmapsto\: {y}^{2} + 4 \geqslant 0 \: which \: is \: always \: true \:  \forall \: y \in \: real \: number

But,

\rm :\longmapsto\:y \geqslant 0

Hence,

\rm\implies \:Range \: of \: function \:  = [0, \:  \infty )

So, we have

\rm\implies \:Domain \: of \: function : x \:  \in \: ( -  \infty ,  \: - 2] \:  \cup \: [2, \:  \infty )

and

\rm\implies \:Range \: of \: function \:  = [0, \:  \infty )

Similar questions