Math, asked by ShaikAyeshasamreen, 6 months ago

the domain of function f(x)=sec-1(3x-4)+tan-1(x+3/5)is​

Answers

Answered by Officialsakshi
16

Answer:

The domain of function f(x)= sec-1(3x-4)+tan-1(x+3/5)is

Answered by Jaswindar9199
0

Hence, Domain of f(x) = ( - 8,1] U [  \frac{5}{3},2)

GIVEN :- f(x)= {sec}^{ - 1} (3x - 4) + {tanh}^{ - 1} ( \frac{x + 3}{5} )[/tex]

TO FIND :- Domain function

SOLUTION:-

The function f(x) =

 {sec}^{ - 1} (3x - 4) +  {tanh}^{ - 1} ( \frac{x + 3}{5} )

 =  {sec}^{ - 1} (3x - 4) +   \frac{1}{2} ln \:  \frac{1  +  \frac{x +3 }{5} }{1 -  \frac{x - 3}{5} }

 =  {sec}^{ - 1} (3x - 4) +  \frac{1}{2} ln( \frac{8 + x}{2 - x})

In

 {sec}^{ - 1}( 3x - 4)

 = 3x - 4 \leqslant  - 1 \: U \: 3x - 4 \geqslant 1

 = 3x \leqslant 3 \: U \: 3x \geqslant 5

 = x \leqslant 1U  x \geqslant  \frac{5}{3}

In

 ln( \frac{8 + x}{2 - x} )

 \frac{8 + x}{2 - x}  > 0

Hence, Domain of f(x) =

( - 8,1] U [  \frac{5}{3},2)

Similar questions