Math, asked by sanjeevk7578, 8 months ago

The domain of sin^-1[log³(x/3)]is?

Answers

Answered by shadowsabers03
2

We're asked to find domain of the function,

\longrightarrow f(x)=\sin^{-1}\left(\log^3\left(\dfrac{x}{3}\right)\right)

Taking y=f(x),

\longrightarrow y=\sin^{-1}\left(\log^3\left(\dfrac{x}{3}\right)\right)

Taking sine,

\longrightarrow \sin y=\log^3\left(\dfrac{x}{3}\right)

Taking cube root,

\longrightarrow \sqrt[3]{\sin y}=\log\left(\dfrac{x}{3}\right)

Taking antilog, we get,

\longrightarrow \dfrac{x}{3}=e^{\sqrt[3]{\sin y}}

Multiplying by 3, we get,

\longrightarrow x=3e^{\sqrt[3]{\sin y}}\quad\quad\dots(1)

We know range of sine function is [\,-1,\ 1\,].

\Longrightarrow \sin y\in[\,-1,\ 1\,]

Taking cube root,

\longrightarrow \sqrt[3]{\sin y}\in\left[\,\sqrt[3]{-1},\ \sqrt[3]{1}\,\right]

\longrightarrow \sqrt[3]{\sin y}\in[\,-1,\ 1\,]

Taking antilog,

\longrightarrow e^{\sqrt[3]{\sin y}}\in[\,e^{-1},\ e^1\,]

\longrightarrow e^{\sqrt[3]{\sin y}}\in\left[\,\dfrac{1}{e},\ e\,\right]

Multiplying by 3 we get,

\longrightarrow 3e^{\sqrt[3]{\sin y}}\in\left[\,\dfrac{3}{e},\ 3e\,\right]

From (1),

\longrightarrow \underline{\underline{x\in\left[\,\dfrac{3}{e},\ 3e\,\right]}}

This is the domain of the function.

Answered by Anonymous
0

Answer:

plz Mark it as brainliest answer plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzz

Similar questions