Math, asked by nikitay22062, 2 months ago

The domain of the function f(x)=1/(x^2-3x+2) is​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{1}{ {x}^{2} - 3x + 2 }

can be rewritten as

\rm :\longmapsto\:f(x) = \dfrac{1}{ {x}^{2} - 2x - x + 2 }

\rm :\longmapsto\:f(x) = \dfrac{1}{x(x - 2)  - 1(x - 2)}

\rm :\longmapsto\:f(x) = \dfrac{1}{(x - 1)(x - 2)}

For, f(x) to be defined,

\rm :\longmapsto\:x - 1 \:  \ne \: 0 \:  \:  \: and \:  \:  \: x - 2 \:  \ne \: 0

\rm :\longmapsto\:x  \:  \ne \: 1 \:  \:  \: and \:  \:  \: x  \:  \ne \: 2

\bf\implies \:x \:  \in \: R \:  -  \:  \{1,2 \}

Hence,

Domain of

\bf :\longmapsto\:f(x) = \dfrac{1}{ {x}^{2} - 3x + 2 }

is

\bf\implies \:x \:  \in \: R \:  -  \:  \{1,2 \}

Additional Information :-

Let us take some more examples.

Question :- Find the domain of the following functions :-

\bf :\longmapsto\:(a) \:  \: f(x) =  \sqrt{x + 2}

For, f(x) to be defined,

\rm :\longmapsto\:x + 2 \geqslant 0

\rm :\longmapsto\:x  \geqslant  -  \: 2

\bf\implies \:x \:  \in \: [ -  \: 2, \:  \infty )

\bf :\longmapsto\:(b) \:  \: f(x) =  \sqrt{ - x + 1}

For, f(x) to be defined,

\rm :\longmapsto\: - x + 1 \geqslant 0

\rm :\longmapsto\: - x  \geqslant  - 1

\rm :\longmapsto\: x  \leqslant  1

\bf\implies \:x \:  \in \: ( -  \:  \infty , \: 1]

\bf :\longmapsto\:(c) \:  \: f(x) =  \sqrt{ 1 -  {x}^{2} }

For, f(x) to be defined,

\rm :\longmapsto\:1 -  {x}^{2}  \geqslant 0

\rm :\longmapsto\: - ({x}^{2}  - 1) \geqslant 0

\rm :\longmapsto\: {x}^{2}  - 1 \leqslant 0

\rm :\longmapsto\:(x - 1)(x + 1) \leqslant 0

\rm :\longmapsto\: - 1 \leqslant x \leqslant 1

\bf\implies \:x \:  \in \: [ - 1, \: 1]

\bf :\longmapsto\:(d) \:  \: f(x) =  \dfrac{1}{ \sqrt{3 - x} }

For, f(x) to be defined,

\rm :\longmapsto\:3 - x > 0

\rm :\longmapsto\: - x >  - 3

\rm :\longmapsto\:  x  <    3

\bf\implies \:x \:  \in \: ( -  \:  \infty , \: 3)

Similar questions