Math, asked by samyak1174, 5 months ago

The domain of the function f(x) = 1/(x² – 3x + 2) is

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\sf \: f(x) =  \frac{1}{ {x}^{2} - 3x + 2 }  \\  \\

\sf \: f(x) =  \frac{1}{ {x}^{2} - 2x - x + 2 }  \\  \\

\sf \: f(x) =  \frac{1}{ x(x - 2) -  1(x - 2) }  \\  \\

\sf \: f(x) =  \frac{1}{ (x - 2) \: (x - 1) }  \\  \\

Now, f(x) is defined if

\sf \: (x - 2)(x - 1) \:  \ne \: 0 \\  \\

\sf \:  \implies \: x \:  \ne \: 1, \: 2 \\  \\

\sf \:  \implies \: x \:  \in \: R -  \{1, \: 2 \} \\  \\

Hence,

\sf \implies Domain \: of \:  \frac{1}{ {x}^{2} - 3x + 2 } \: is \:  x \:  \in \: R -  \{1, \: 2 \} \\  \\

\rule{190pt}{2pt}

Additional Information

 \begin{gathered}\boxed{\begin{array}{c|c} \bf Function & \bf Range \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf y = sinx & \sf   - 1 \leqslant y \leqslant 1\\ \\ \sf y = cosx & \sf  - 1 \leqslant y \leqslant 1 \\ \\ \sf y = tanx & \sf y \:  \in \: ( -  \infty , \infty )\\ \\ \sf y = cosec & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = secx & \sf y \leqslant  - 1 \:  \: or \:  \: y \geqslant 1\\ \\ \sf y = cotx & \sf y \:  \in \: ( -  \infty , \infty ) \end{array}} \\ \end{gathered} \\  \\

Answered by XxTheThunderxX
6

Sᴏʟᴜᴛɪᴏɴ :-

Given function :-

  \begin{gathered}\\ \large\dashrightarrow\mathsf {  \:  \: f(x)   =  \frac{1}{x {}^{2}  - 3x + 2}   } \\ \end{gathered}

So,

  \begin{gathered}\\ \large\dashrightarrow\mathsf {     \:  \:  \frac{1}{x {}^{2}  - 3x + 2}  } \\ \end{gathered}

  \begin{gathered}\\ \large\mathsf {     \:  \: x {}^{2}  - 3x + 2 } \\ \end{gathered}

Dᴏᴍᴀɪɴ :-

  \begin{gathered}\\ \large\dashrightarrow \boxed{\mathsf \red {    \:  \: x \:  \in \:  \mathbb{R}     \:  \: -  \bigg \{1 \:  \: and \:  \: 2 \:  \bigg \}}} \\ \end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions