Math, asked by jin123566, 1 month ago

The domain of the function f(x) = 1/(x² – 3x + 2) is

Answers

Answered by AbhinavRocks10
44

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{1}{ {x}^{2} - 3x + 2 }

Can be rewritten as

\rm :\longmapsto\:f(x) = \dfrac{1}{ {x}^{2} - 2x - x + 2}

\rm :\longmapsto\:f(x) = \dfrac{1}{x(x - 2) - 1(x - 2)}

\rm :\longmapsto\:f(x) = \dfrac{1}{(x - 1)(x - 2)}

For, f(x) to be defined,

\rm :\longmapsto\:x - 1 \: \ne \: 0 \: \: \: and \: \: \: x - 2 \: \ne \: 0

\rm :\longmapsto\:x \: \ne \: 1 \: \: \: and \: \: \: x \: \ne \: 2

\bf\implies \:x \: \in \: R \: - \: \{1,2 \}

Hence,

Domain of

\bf :\longmapsto\:f(x) = \dfrac{1}{ {x}^{2} - 3x + 2 }

\bf\implies \:x \: \in \: R \: - \: \{1,2 \}

Additional Information :-

Let us take some more examples.

Question :- Find the domain of the following functions :-

\bf :\longmapsto\:(a) \: \: f(x) = \sqrt{x + 2}

For, f(x) to be defined,

\rm :\longmapsto\:x + 2 \geqslant 0

\rm :\longmapsto\:x \geqslant - \: 2

\bf\implies \:x \: \in \: [ - \: 2, \: \infty )

\bf :\longmapsto\:(b) \: \: f(x) = \sqrt{ - x + 1}

For, f(x) to be defined,

\rm :\longmapsto\: - x + 1 \geqslant 0

\rm :\longmapsto\: - x \geqslant - 1

\rm :\longmapsto\: x \leqslant 1

\bf\implies \:x \: \in \: ( - \: \infty , \: 1]

\bf :\longmapsto\:(c) \: \: f(x) = \sqrt{ 1 - {x}^{2} }

For, f(x) to be defined,

\rm :\longmapsto\:1 - {x}^{2} \geqslant 0

\rm :\longmapsto\: - ({x}^{2} - 1) \geqslant 0

\rm :\longmapsto\: {x}^{2} - 1 \leqslant 0

\rm :\longmapsto\:(x - 1)(x + 1) \leqslant 0

\rm :\longmapsto\: - 1 \leqslant x \leqslant 1

\bf\implies \:x \: \in \: [ - 1, \: 1]

\bf :\longmapsto\:(d) \: \: f(x) = \dfrac{1}{ \sqrt{3 - x} }

For, f(x) to be defined,

\rm :\longmapsto\:3 - x > 0

\rm :\longmapsto\: - x > - 3

\rm :\longmapsto\: x < 3

\bf\implies \:x \: \in \: ( - \: \infty , \: 3)

Answered by pulakmath007
5

SOLUTION

TO DETERMINE

The domain of the function

\displaystyle \sf{ f(x) =  \frac{1}{ {x}^{2}   - 3x + 2}  }

EVALUATION

Here the given function is

\displaystyle \sf{ f(x) =  \frac{1}{ {x}^{2}   - 3x + 2}  }

Now we factorise the denominator

\displaystyle \sf{ f(x) =  \frac{1}{ {x}^{2}   - 3x + 2}  }

\displaystyle \sf{ \implies f(x) =  \frac{1}{ {x}^{2}   - 2x - x + 2}  }

\displaystyle \sf{ \implies f(x) =  \frac{1}{x(x - 2) - (x - 2)}  }

\displaystyle \sf{ \implies f(x) =  \frac{1}{(x - 1)  (x - 2)}  }

The function is well defined for all values of x except where the denominator vanishes

Now the denominator vanish

When ( x - 1 ) ( x - 2 ) = 0

⇒ x = 1 , 2

Hence the required Domain of the function

 \sf =  \mathbb{R} -  \{1, 2 \}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If g(x)=−7x−1 and h(x)=2x+3, what is −3(g+h)(x)?

https://brainly.in/question/26186966

2. let f and g be thwe function from the set of integers to itself defined by f(X) =2x +1 and g (X)=3x+4 then the compositi...

https://brainly.in/question/22185565

Similar questions