Math, asked by thavamanithavamani12, 3 months ago

The domain of the function f(x)=2x+3/underroot (x-2)(3-x) is​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) = \dfrac{2x + 3}{ \sqrt{(x - 2)(3 - x)} }

\rm :\longmapsto\:So \: f(x) \: is \: defined \: if

\rm :\longmapsto\:(x - 2)(3 - x) > 0

\rm :\longmapsto\: - (x - 2)(x - 3)   >  0

\rm :\longmapsto\:(x - 2)(x - 3) < 0

\bf\implies \:2 < x < 3

\bf\implies \: x \:  \in \: (2, \: 3)

Additional Information :-

Let us assume that a > b then

\rm :\longmapsto\:(x - a)(x - b) < 0 \implies \: a < x < b

\rm :\longmapsto\:(x - a)(x - b)  >  0 \implies \: x < b \:  \: or \:  \: x > b

\rm :\longmapsto\:(x - a)(x - b)  \leqslant  0 \implies \: a  \leqslant  x  \leqslant  b

\rm :\longmapsto\:(x - a)(x - b)   \geqslant   0 \implies \: x  \leqslant  b \:  \: or \:  \: x  \geqslant  b

Domain :- Let f(x) be a function, then set of those values of x where f(x) is well defined is called domain.

Range :-

To find the range of f(x)

Step : - 1. Let y = f(x)

Step :- 2. Express x in terms of y, say x = g(y).

Step :- 3. Find the domain of g(y).

Step :- 4. This will be the range of f(x).

Similar questions