Math, asked by SuzzyGhosh123, 10 hours ago

The domain of the function f(x)=√9 − x to the power
2 is

Please do help me fast. I will mark u brainliest.

Attachments:

Answers

Answered by mathdude500
5

 \green{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:f(x) =  \sqrt{9 -  {x}^{2} }

We know,

Domain of a function is defined as set of those values of x, for which function is well defined.

So,

\rm :\longmapsto\: \sqrt{9 -  {x}^{2} } \: is \: defined \: when

\rm :\longmapsto\:9 -  {x}^{2}  \geqslant 0

\rm :\longmapsto\: - ({x}^{2} - 9)  \geqslant 0

\rm :\longmapsto\: {x}^{2} - 9  \leqslant 0

\rm :\longmapsto\: {x}^{2} -  {3}^{2}   \leqslant 0

\rm :\longmapsto\:(x - 3)(x + 3) \leqslant 0

\bf\implies \: - 3 \leqslant x \leqslant 3

\bf\implies \:x \:  \in \: [ - 3, \: 3]

So, option a) is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\boxed{\tt{  |x|  < y \: \rm \implies\: - y < x < y \: }}

\boxed{\tt{  |x|   \leqslant  y \: \rm \implies\: - y  \leqslant  x  \leqslant  y \: }}

\boxed{\tt{  |x| > y \: \rm \implies\: \: x <  - y \:  \: or \:  \: x  > y \: }}

\boxed{\tt{  |x|  \geqslant  y \: \rm \implies\: \: x  \leqslant   - y \:  \: or \:  \: x   \geqslant  y \: }}

\boxed{\tt{  |x - a|  < y \: \rm \implies\:a - y < x <a +  y \: }}

\boxed{\tt{  |x - a|   \leqslant  y \: \rm \implies\:a - y  \leqslant  x  \leqslant a +  y \: }}

Similar questions