the domain of the function f(x)=sec^-1(3x-4)+tanh^-1(x+3/5)
Answers
Answered by
0
Question :
Find the domain of the function f(x)=sec^-1(3x-4)+tan h^-1(x+3/5)
Answer :
Domain of f(x) = (-8,1 ] U [5/3,2).
Given :
the function f(x)=sec^-1(3x-4)+tan h^-1(x+3/5)
To find :
The domain of the given function
Solution :
The function f(x)=sec^-1(3x-4)+tan h^-1(x+3/5)
= sec^-1(3x-4)+ 1/2 ln [{ 1 + (x+3/5)} / {1 - (x+3/5)}]
= sec^-1(3x-4)+ 1/2 ln [(8+x) / (2-x)]
For sec^-1(3x-4),
3x-4 ≤ -1 U 3x - 4 ≥ 1
= 3x ≤ 3 U 3x ≥ 5
= x ≤ U x ≥ 5/3
Hence, x ∈ (−∞, 1 ] U x ∈ [ 5/3,∞)
For ln [(8+x) / (2-x)]
(8+x) / (2-x) > 0
x ∈ (-8,0)
Hence, Domain of f(x) = (-8,1 ] U [5/3,2).
#SPJ3
Similar questions