Math, asked by irshadnasiha, 8 months ago

The domination of fraction exceeds its numinator by 4. If the numinator and dinominator are both incered by 3, the new fraction become 4/5 find the original fraction. Plezz tell the answer ​

Answers

Answered by Anonymous
8

let numerator be x

as \: per \: conditions \\  \frac{x}{4 + x}  \: and  \\  \\ \:  \frac{x + 3}{x + 7}  =  \frac{4}{5}  \\ 5x + 15 = 4x + 28 \\ x = 13 \\ original \: fraction =  \frac{13}{17}

Answered by mddilshad11ab
157

\bf\blue{\underbrace{AnsweEr\implies \frac{13}{17}}}

\sf\large\underline{Let:}

\sf{\implies The\: numerator\:be\:x}

\sf{\implies The\: denominator\:be\:y}

\sf{\implies The\: orginal\: fraction\:be\:\frac{x}{y}}

\sf\large\underline{To\: Find:}

\sf{\implies The\: orginal\: fraction=?}

\sf\large\underline{Solution:}

  • By setting equation and calculate the value of x and y than calculate orginal fraction after putting the value of x and y]

\sf\small\underline{Given\:in\:case\:(i):}

  • The denominator of fraction exceeds its numinator by 4]

\rm{\implies y=x+4-------(i)}

\sf\small\underline{Given\:in\:case\:(ii):}

  • The numerator and denominator are both increased by 3, the new fraction become 4/5]

\tt{\implies \dfrac{x+3}{y+3}=\dfrac{4}{5}}

\rm{\implies 5(x+3)=4(y+3)}

\rm{\implies 5x+15=4y+12}

\rm{\implies 5x-4y=12-15}

\rm{\implies 5x-4y=-3-----(ii)}

  • Putting the value of y=x+4 here]

\rm{\implies 5x-4(x+4)=-3}

\rm{\implies 5x-4x-16=-3}

\rm{\implies x=-3+16\implies x=13}

  • Now putting the value of x=13 in eq (i)

\rm{\implies y=x+4}

\rm{\implies y=13+4\implies y=17}

\sf\large{Hence,}

\sf{\implies The\: orginal\: fraction=\dfrac{x}{y}}

\sf{\implies The\: orginal\: fraction=\frac{13}{17}}


amitkumar44481: Well Explain :-)
mddilshad11ab: thanks bro
Anonymous: Marvelous ! :)
mddilshad11ab: thanks bhai
BloomingBud: Great answer !!
mddilshad11ab: thanks @Bsis❤️
Similar questions