Math, asked by bachaspatimayumranja, 7 months ago

The drive of a speedy car applied breaks which can produce an acceleration of 10ms² in a direction opposite to that of the montion. Calculate the distance it travels during 3s which is the time taken by the car before coming to a rest​

Answers

Answered by SarcasticL0ve
7

GivEn:

  • Acceleration produced by the driver = 10 m/s²
  • Time taken by the car before coming to a rest = 3 sec

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Distance travelled by car.

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

⠀⠀⠀⠀⠀⠀⠀

Here,

\sf we\;have  \begin{cases} & \text{v = 0 m/s }  \\ & \text{a = - 10 m/$s^2$ }  \\ & \text{t = 3 s} \end{cases}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Using\;1st\;equation\;of\;motion\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\star\;{\boxed{\sf{\purple{v = u + at}}}}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\small\sf \underline{Putting\;values}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 0 = u + (-10) \times 3

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf 0 = u - 30

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf \pink{u = 30\;m/s}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Again,\;Using\;2nd\;equation\;of\;motion\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\star\;{\boxed{\sf{\purple{s = ut + \dfrac{1}{2}at^2}}}}

⠀⠀⠀⠀⠀⠀⠀

\;\;\;\;\;\small\sf \underline{Putting\;values}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf s = 30 \times 3 + \dfrac{1}{2} \times -10 \times 3 \times 3

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf s = 90 + \dfrac{1}{ \cancel{2}} \times \cancel{-10} \times 9

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf s = 90 - 5 \times 9

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf s = 90 - 45

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\green{s = 45\;m}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore Distance travelled by car before coming rest is 45 m.

━━━━━━━━━━━━━━━

Additional Information:

★ There are three equations of motion:-

⠀⠀⠀✩ \sf v = u + at

⠀⠀⠀✩ \sf s = ut + \dfrac{1}{2} at^2

⠀⠀⠀✩ \sf v^2 - u^2 = 2as

⠀⠀ ━━━━━━━━━━━━━━━━━━━━━

\;\;\star\;\sf Acceleration (a) = \dfrac{Final\; velocity (v) - Initial\; velocity (u)}{Time (t)}

Answered by Blossomfairy
7

Given :

  • Acceleration (a) = - 10 m/s²
  • Time (t) = 3 seconds
  • Final velocity (v) = 0 m/s

To find :

  • Distance (s)

According to the question,

\star \boxed{ \sf \red{v = u + at}}

Now according to the formula we will calculate the initial velocity (u)

 \tt{ \:  \:  \rightarrow0  = u + ( - 10) \times 3 }

 \sf{ \:  \: \rightarrow0 = u + 30}

 \sf{ \:  \: \rightarrow\:u= 30-0}

 \sf{ \:  \: \rightarrow\:u= 30}\orange\bigstar

Now we will calculate the distance, so the formula is,

\star \boxed{ \sf \red{s = ut +  \frac{1}{2}  {at}^{2} }}

So,according to the formula we will put the value

\tt{ \:   \: \rightarrow30 \times 3 +  \frac{1}{2}  \times ( - 10) \times  {(3)}^{2} }

\tt{ \: \: \rightarrow90 +  \frac{1}{ \cancel2}  \times  -  \cancel{ 10 } {}^{ \:  \: 5} \times 9 }

\tt{ \:  \:  \rightarrow90   - 5 \times 9}

\tt{ \:  \:  \rightarrow90   - 45}

\tt{ \:  \:  \rightarrow45\: m}\orange\bigstar

So,the distance is 45 m...

Similar questions