Social Sciences, asked by anushkaKhatri, 4 months ago

The earth receives major part of pure water through which of the following?


Answers

Answered by manishas1001
0

Answer:

tgyvyvybuim ggyygubinvtxtxudiv

Answered by Elsa1221
1

Most water in Earth's atmosphere and crust comes from the World Ocean's saline seawater, while fresh water accounts for nearly 1% of the total. Because the oceans that cover roughly 71% of the area of Earth reflect blue light, Earth appears blue from space, and is often referred to as the blue planet and the Pale Blue Dot. An estimated 1.5 to 11 times the amount of water in the oceans may be found hundreds of kilometers deep within the Earth's interior, although not in liquid form.

The oceanic crust is young, thin and dense, with none of the rocks within it dating from any older than the breakup of Pangaea. Because water is much denser than any gas, this means that water will flow into the "depressions" formed as a result of the high density of oceanic crust (on a planet like Venus, with no water, the depressions appear to form a vast plain above which rise plateaux). Since the low density rocks of the continental crust contain large quantities of easily eroded salts of the alkali and alkaline earth metals, salt has, over billions of years, accumulated in the oceans as a result of evaporation returning the fresh water to land as rain and snow.

As a result, the vast bulk of the water on Earth is regarded as saline or salt water, with an average salinity of 35‰ (or 4.5%, roughly equivalent to 34 grams of salts in 1 kg of seawater), though this varies slightly according to the amount of runoff received from surrounding land. In all, water from oceans and marginal seas, saline groundwater and water from saline closed lakes amount to over 97% of the water on Earth, though no closed lake stores a globally significant amount of water. Saline groundwater is seldom considered except when evaluating water quality in arid regions.

The remainder of Earth's water constitutes the planet's fresh water resource. Typically, fresh water is defined as water with a salinity of less than 1 percent that of the oceans - i.e. below around 0.35‰. Water with a salinity between this level and 1‰ is typically referred to as marginal water because it is marginal for many uses by humans and animals. The ratio of salt water to fresh water on Earth is around 50 to 1.

The planet's fresh water is also very unevenly distributed. Although in warm periods such as the Mesozoic and Paleogene when there were no glaciers anywhere on the planet all fresh water was found in rivers and streams, today most fresh water exists in the form of ice, snow, groundwater and soil moisture, with only 0.3% in liquid form on the surface. Of the liquid surface fresh water, 87% is contained in lakes, 11% in swamps, and only 2% in rivers. Small quantities of water also exist in the atmosphere and in living beings. Of these sources, only river water is generally valuable.

Most lakes are in very inhospitable regions such as the glacial lakes of Canada, Lake Baikal in Russia, Lake Khövsgöl in Mongolia, and the African Great Lakes. The North American Great Lakes, which contain 21% of the world's fresh water by volume, are the exception. They are located in a hospitable region, which is heavily populated. The Great Lakes Basin is home to 33 million people. The Canadian cities of Toronto, Hamilton, St. Catharines, Niagara, Oshawa, Windsor, and Barrie, and the U.S. cities of Duluth, Milwaukee, Chicago, Gary, Detroit, Cleveland, Buffalo, and Rochester, are all located on shores of the Great Lakes.

Although the total volume of groundwater is known to be much greater than that of river runoff, a large proportion of this groundwater is saline and should therefore be classified with the saline water above. There is also a lot of fossil groundwater in arid regions that has never been renewed for thousands of years; this must not be seen as renewable water.

However, fresh groundwater is of great value, especially in arid countries such as India. Its distribution is broadly similar to that of surface river water, but it is easier to store in hot and dry climates because groundwater storages are much more shielded from evaporation than are dams. In countries such as Yemen, groundwater from erratic rainfall during the rainy season is the major source of irrigation water.

Because groundwater recharge is much more difficult to accurately measure than surface runoff, groundwater is not generally used in areas where even fairly limited levels of surface water are available. Even today, estimates of total groundwater recharge vary greatly for the same region depending on what source is used, and cases where fossil groundwater is exploited beyond the recharge rate (including the Ogallala Aquifer) are very frequent and almost always not seriously considered when they were first developed.

Similar questions