Math, asked by yashlakhe017, 11 months ago

The eccentricity of the ellipse 25x² +16y² = 400 is​

Answers

Answered by MaheswariS
0

\textbf{Given:}

\mathsf{Ellipse\;is\;25x^2+16y^2=400}

\textbf{To find:}

\textsf{Eccentricity of the given ellipse}

\textbf{Solution:}

\textbf{Concept used:}

\boxed{\begin{minipage}{7cm}$\mathsf{Eccentricity\;of\;the\;ellipse\;\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\;is}\\\\\mathsf{e=\sqrt{1-\dfrac{b^2}{a^2}}}$\end{minipage}}

\mathsf{Consider,}

\mathsf{25x^2+16y^2=400}

\textsf{Divide bothsides by 400}

\mathsf{\dfrac{25x^2}{400}+\dfrac{16y^2}{400}=\dfrac{400}{400}}

\mathsf{\dfrac{x^2}{16}+\dfrac{y^2}{25}=1}

\mathsf{Here,\;a^2=25,\;b^2=16}

\mathsf{Then,\;Eccentricity}

\mathsf{e=\sqrt{1-\dfrac{b^2}{a^2}}}

\mathsf{e=\sqrt{1-\dfrac{16}{25}}}

\mathsf{e=\sqrt{\dfrac{25-16}{25}}}

\mathsf{e=\sqrt{\dfrac{29}{25}}}

\implies\boxed{\mathsf{e=\dfrac{3}{5}}}

\textbf{Find more:}

The eccentricity of the ellipse represented by x = 5 (cos t + sin t), y = 3 (cos t – sin t) where t is parameter, is given by e, then 20e is equal to

https://brainly.in/question/29206012

Similar questions