Math, asked by elizaford, 7 months ago

The eccentricity of the ellipse 9x2 + 25y2 = 225
is​

Answers

Answered by mdmdarshad67
0

Step-by-step explanation:

9×2 +25y^2 =225

18 + 25y^2 =225

25y^2 =225 -18

25y^2 = 207

y^2 =207/25

y= (207/25)^1/2

y = 3√23/5

Answered by Asterinn
3

Given :

  • Equation of ellipse : 9x² + 25y² = 225

To find :

  • Eccentricity of the ellipse

Formula used :

 \sf equation \: of \: ellipse :  \dfrac{ {x}^{2} }{ {a}^{2} } +  \dfrac{ {y}^{2} }{ {b}^{2} } = 1

Now eccentricity :-

 \sf \dfrac{ {b}^{2} }{{a}^{2}}  = 1 -  {e}^{2}

Where e = eccentricity

Solution :

 \implies \sf 9 {x}^{2}  + 25 {y}^{2}  = 225

\implies \sf  \dfrac{9}{225}  {x}^{2}  + \dfrac{25}{225} {y}^{2}  = 1

\implies \sf  \dfrac{{x}^{2}}{ (\frac{225}{9} )}   + \dfrac{{y}^{2}}{( \frac{225}{25}) }  = 1

\implies \sf  \dfrac{{x}^{2}}{  {(\frac{15}{3} )}^{2} }   + \dfrac{{y}^{2}}{(  {\frac{15}{5})}^{2}  }  = 1

\implies \sf  \dfrac{{x}^{2}}{  {(5)}^{2} }   + \dfrac{{y}^{2}}{(  {3)}^{2}  }  = 1

\implies \sf  \dfrac{{x}^{2}}{  25}   + \dfrac{{y}^{2}}{  9 }  = 1

Now, a = 5 and a²= 25

b = 3 and b² = 9

Now to find out eccentricity put the value of a² and b² :-

 \implies \sf \dfrac{ {b}^{2} }{{a}^{2}}  = 1 -  {e}^{2}

\implies \sf \dfrac{ 9 }{25}  = 1 -  {e}^{2}

\implies \sf 1 -  {e}^{2}  = \dfrac{ 9 }{25}

\implies \sf -  {e}^{2}  =\dfrac{ 9  }{25} - 1

\implies \sf -  {e}^{2}  =\dfrac{ 9  - 25}{25}

\implies \sf -  {e}^{2}  =\dfrac{   - 16}{25}

\implies \sf  {e}  = \sqrt{\dfrac{    16}{25} }

 \implies \sf e = \pm \dfrac{    4}{5}

But we have to neglect -4/5 because eccentricity of ellipse is always between zero and one.

\implies \sf {e}  = \dfrac{4}{5}

Answer :

  • The eccentricity of the ellipse 9x2 + 25y2 = 225= 4/5
Similar questions