Math, asked by op07gamers, 3 days ago

The edges of a triangle board are 12cm,16cm and 20cm. it is to be painted on both sides the cost of painting it 25paise per cm^2 is.

Answers

Answered by mathdude500
3

Appropriate Question :-

The edges of a triangle board are 12cm,16cm and 20cm. It is to be painted on both sides. The cost of painting it 25paise per cm^2 is _______

\large\underline{\sf{Solution-}}

Given that,

The edges of a triangle board are 12cm,16cm and 20cm.

Let assume that the required triangle be ABC such that

AB = c = 12 cm

BC = a = 16 cm

CA = b = 20 cm

Consider,

\rm \:  {a}^{2} +  {c}^{2}  \\

\rm \: =  \:  {12}^{2} +  {16}^{2}  \\

\rm \: =  \: 144 + 256 \\

\rm \: =  \: 400 \\

\rm \: =  \:  {20}^{2}  \\

\rm \: =  \:  {b}^{2}

\rm\implies \: {a}^{2} +  {c}^{2} =  {b}^{2}  \\

\rm\implies \: \triangle \: ABC \: is \: right \: angle \:  \triangle \: right \: angled \: at \: B \\

So,

\rm \: Area_{(\triangle\:ABC)} = \dfrac{1}{2} \times AB \times BC \\

\rm \: Area_{(\triangle\:ABC)} = \dfrac{1}{2} \times 12 \times 16 \\

\rm \: Area_{(\triangle\:ABC)} = 96 \:  {cm}^{2}  \\

Now, Total area to be painted is

\rm \: Area_{(to \: be \: painted)} = 96 \times 2 = 192 \:  {cm}^{2}  \\

Now, given that,

\rm \: Cost \: of \: painting \:  {1 \: cm}^{2} = 25 \: paisa \:

So,

\rm \: Cost \: of \: painting \:  {192 \: cm}^{2} = 192 \times 25  = 4800\: paisa \:

We know, I rupee = 100 paisa

So,

\rm \: Cost \: of \: painting \:  {192 \: cm}^{2} = \dfrac{4800}{100}  = Rs \: 48 \:  \\

Hence,

The edges of a triangle board are 12cm,16cm and 20cm. It is to be painted on both sides. The cost of painting it 25paise per cm^2 is Rs 48.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Similar questions