Math, asked by llMichFabulousll, 9 days ago

The edges of a triangular board are 6cm ,8cm and 10cm. the cost of painting it at the rate of 9 paise per cm square is ___​

Answers

Answered by Anonymous
15

Given :

  • 1st edge of the Triangle = 6 cm
  • 2nd edge of the Triangle = 8 cm
  • 3rd edge of the Triangle = 10 cm
  • Rate of painting = 9 paise cm²

 \\ \\

To Find :

  • Cost of Painting = ?

 \\ \\

SolutioN :

~ Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ S = \dfrac{a + b + c}{2} }}}}}

  •  {\underline{\boxed{\pmb{\sf{ Area = \sqrt{s (s - a)(s - b)(s - c)} }}}}}

Where :

  • s = Semi - Perimeter
  • a = Side 1
  • b = Side 2
  • c = Side 3

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Semi - Perimeter :

 {\implies{\qquad{\sf{ S = \dfrac{a + b + c}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \dfrac{6 + 8 + 10}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \dfrac{6 + 18}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \dfrac{24}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \cancel\dfrac{24}{2} }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\orange{\pmb{\frak{ Semi - Perimeter = 12 \; cm }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Area :

 {\dashrightarrow{\qquad{\sf{ Area = \sqrt{s (s - a)(s - b)(s - c)} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{12 (12 - 10)(12 - 8)(12 - 6)} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{12 \times 2 \times 4 \times 6 } }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{2 \times 3 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 } }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area =2 \times 3 \times 2 \times 2 }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = 6 \times 4 }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\purple{\pmb{\frak{ Area = 24 \; {cm}^{2} }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Cost :

 {\longmapsto{\qquad{\sf{ Cost = Area \times Rate }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ Cost = 24 \times 9 }}}} \; \; \; \; \; \bigg\lgroup {\pink{\sf{Rs. \; 1 = 100 \; Paise }}} \bigg\rgroup \\ \\ \\ \ {\longmapsto{\qquad{\sf{ Cost = 24 \times \dfrac{9}{100} }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ Cost = 24 \times \cancel\dfrac{9}{100} }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ Cost = 24 \times 0.09 }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\red{\pmb{\frak{ Cost = ₹ \; 2.16 }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

❛❛ Cost of Painting the Triangular board is 2.16 . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by MrKimo
8

Rough Diagram:-

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf 6 \ cm(x)$}\put(0.5,-0.3){$\bf 10 \ cm(z)$}\put(5.2,-0.3){$\bf 8 \ cm(y)$}\end{picture}

Given :

  • 6 cm (x)
  • 8 cm (y)
  • 10 cm (z)

To Find :

The cost of painting it at the rate of 9 paise per cm square.

Solution :

✴ \rm{Semi - Perimeter} =  \dfrac{x + y+ z}{2} \\ \\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \ \dashrightarrow  \dfrac{6 + 8 + 10}{2}  \\  \\

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \dashrightarrow  \cancel\dfrac{24}{2}  \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dashrightarrow \rm12 \:  cm \\  \\

✴ \rm{Area  \: of \:  the  \: triangle =  \sqrt{s(s - a)(s - b)(s - c) }  }\\\\\\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \dashrightarrow \rm{ \sqrt{12(12 - 6)(12 - 8)(12 - 10)} }  \\  \\  \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \dashrightarrow \rm{ \sqrt{12 \times (6) \times (4) \times (2)} }  \\  \\  \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \dashrightarrow \rm{ \sqrt{12 \times 6 \times 4 \times 2} }  \\  \\  \\  \\

 \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:   \dashrightarrow \rm{ \sqrt{12 \times (3 \times 2)\times 4 \times 2} }  \\  \\  \\  \\

 \:  \:  \:  \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:   \dashrightarrow \rm{ \sqrt{12 \times 3 \times 4 \times 2 \times 2} }  \\  \\  \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \dashrightarrow \rm{ \sqrt{12 \times 12 \times 2 \times 2} }  \\  \\  \\  \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \dashrightarrow \rm{ \sqrt{(12)^{2} \times ( 2)^{2} } }  \\  \\  \\  \\

 \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:   \dashrightarrow \rm{ 12\times  2 = 24 \: cm ^{2} } \\  \\  \\  \\

 \begin{cases} \rm Cost \:  of  \: painting \:  for  \: area  \: 1  \: cm ^{2}  = ₹ 1 \:  cm ^{2} \\  \\  \\  \rm{Cost \:  of  \: painting \:  for  \: area \: 24  \: {cm}^{2}  = 0.09 \times 24 = ₹2.16 }\end{cases}

∴Cost of painting for area 24 cm² = ₹2.16

Similar questions