Physics, asked by nitesh7110, 10 months ago

The Eigen vectors of matrix :
coso - sin 07
4-sino cose
are :​

Answers

Answered by bidulata2k
0

Answer:

From the Question,

Mass of the particle,m = 3 Kg

Displacement of the particle is defined as:

\begin{lgathered}\large{\sf{s = \frac{1}{3} t {}^{2}}} \\\end{lgathered}

s=

3

1

t

2

Differentiating s w.r.t to t,we get velocity of the particle:

\begin{lgathered}\large{\sf{v = \frac{ds}{dt} }} \\ \\ \rightarrow \ \sf{v = \frac{d( \frac{1}{3}t {}^{2} ) }{dt} } \\ \\ \rightarrow \: \huge{ \rm{v \: = \frac{2}{3}t \: ms {}^{ - 1} }}\end{lgathered}

v=

dt

ds

→ v=

dt

d(

3

1

t

2

)

→v=

3

2

tms

−1

Differentiating v w.r.t to t,we get:

\begin{lgathered}\large{ \sf{a = \frac{dv}{dt}}} \\ \\ \rightarrow \ \sf{a = \frac{d(\frac{2}{3}t)}{dt}} \\ \\\huge{\rightarrow \: \boxed{\rm{a = \: {\frac{2}{3}} ms^{ - 2} }}}\end{lgathered}

a=

dt

dv

→ a=

dt

d(

3

2

t)

a=

3

2

ms

−2

We Know that,

F = ma

→ F = ⅔(3)

→F = 2 N

When t = 2, displacement would be:

\begin{lgathered}\sf{s = \frac{1}{2} (2) {}^{2}} \\ \\ \huge{\implies \: \sf{s = \frac{4}{3}m}}\end{lgathered}

s=

2

1

(2)

2

⟹s=

3

4

m

\therefore∴

\Huge{\boxed{\boxed{\sf{W = F.s}}}}

W=F.s

Putting the values,we get:

\begin{lgathered}\sf{W = 2 \times \frac{4}{3} } \\ \\ \implies \ \huge{\sf{W = \frac{8}{3} J}}\end{lgathered}

W=2×

3

4

⟹ W=

3

8

J

Thus,the work done by the force is 8/3 Joules

The correct option is____________(c)

Similar questions