Math, asked by lailasalim76, 3 months ago

The eighth term of an arithmatic sequence is 5 times third term, and the seventh term is nine greater than fourth term. Find the first five terms

Answers

Answered by ABHINAV012
1

Answer:

\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star

Step-by-step explanation:

given , \:  a8 = 5×a3

and, \:  a7 = 9+a4

=> a1 +7d= 5(a1+2d)

=> a1+7d=5a1+10d

=> -4a = 3d -----(1)

now, a7 = 9+a4

=> a1+6d= 9+a1+3d

=>a1-a1+ 6d-3d = 9

=> 3d = 9

=> d =  \frac{9}{3} = 3

From \:  (1) \:  , we  \: get:

-4a = 3(3)

= -4a = 9

= a = -\frac{9}{4}

now,  \: a2 = a1+d

=> - \frac{9}{4} +3

=>  \frac{ - 9 + 12}{4}  =  \frac{3}{4}

a3 = a2+d

=> \frac{3}{4} +3

=>  \frac{3 + 12}{4}  =  \frac{15}{4}

a4 = a3+d

=> \frac{15}{4} +3

=>  \frac{15 + 12}{4}  = \frac{27}{4}

therefore,  \: first  \: five \:  terms \:  are :

 -  \frac{9}{4} \:  ,  \: \frac{3}{4} , \: \frac{15}{4} ,  \: \frac{27}{4} , \: \frac{39}{4} .

please  \: like \:  my \:  answer \\     \&\\ mark  \: me  \: brainliest \:  please \: :)))

\star\large\mathcal{\underline{\underline{PLEASE \: }}}\large\mathcal\red{\underline{\underline{F}}}\large\mathcal\green{\underline{\underline{OLL}}}\large\mathcal\pink{\underline{\underline{OW \: }}}\large\mathcal\blue{\underline{\underline{ME}}}\star

\star \: i \: hope \: you \: will \: understand \: me\star

Similar questions