Math, asked by raniagita2341, 1 month ago

The eighth term of the geometric sequence -3, 9, -27, 81, .... is
A. -6.561
B. -2.187
C. 2.187
D. 6.561

Answers

Answered by TrustedAnswerer19
16

\small{\orange{ \boxed{ \boxed{ \begin{array}{cc}\hookrightarrow \sf \: \: given \: the \: G.P \: series \:  :  \\  \\  \sf \: - 3,9, - 27,81. \: . \: . \:  \\  \\ \blue{ \underline{\sf \: we \: have \: to \: find : }} \\  \\  \hookrightarrow  \sf \: {8}^{th}  \: term \: of \: the \: G.P \: series   = T_8\\  \\  \\  \red{ \underline{ \sf \: solution :}} \\   \\ \hookrightarrow \: \sf \:  first \: term \: of \: the \: G.P \: series,  \:  a =  - 3 \\  \\ \hookrightarrow \sf \:common \: ratio \: of \: the \: G.P \: series ,\:  r =  \frac{9}{ - 3}  =  - 3 \\  \\  \\  \pink{ \underline{ \sf \: we \: know \: that : }} \\  \\ \hookrightarrow \: \sf \: general \: term \: of \:G.P \: series \:  \: T_n= a {r}^{n - 1}   \\  \\  \\  \bf \: now \: according \: to \: the \: question \:  \\  \\  \sf \: T_8 =  - 3 \times  {( - 3)}^{8 - 1}  \\  \\  =  - 3 \times  {( - 3)}^{7}  \\  \\  = 3 \times  {3}^{7} \\  \\  =  {3}^{8}  \\  \\  = 6561 \\  \\   \blue{ \boxed{\therefore \sf \:  {8}^{th} \: term \: of \: the \: series \: is = 6561}} \\  \\  \end{array}}}}}

Answered by nirbhayjaiswal500
1

Answer:

8th term= 6561

Step-by-step explanation:

Here r1=9/-3=-3

r2=-27/9=-3

a=-3

n=8

nth term=a*r^(n-1)

8th term= -3*(-3)⁷

8th term= -3*(-2187)

8th term= 6561

Similar questions