Physics, asked by Amisha101, 1 year ago

The electric field at 2R from the centre of a uniformly charged non conducting sphere of radius R is E. The electric field at a distance R/2 from the centre will be
1) zero
2) 2E
3) 4E
4) 16E

Answers

Answered by HarshitIITBOMBAY
9
Hello

by gauss law the field inside a hollow sphere is. zero
since the object is placed at R/2 means inside the sphere

so charge enclosed is zero hence field will be zero

option 1) is correct

Anonymous: check
Anonymous: mr.mysterious
Anonymous: ac
Anonymous: he had very fake ac
Anonymous: check ffast
Answered by skyfall63
16

Answer:

The electric field is 2) 2E

Given:

Radius, R = 2 R

Electric field, E = E

Solution:

According to given question, the electric field at a distance from center is given and 4 times less than distance will have electric field in relation as following:

As we know that,

\text{Electric field}, \mathrm{E}=\frac{\mathrm{k} \mathrm{Q}}{\mathrm{R}^{2}}

\mathrm{E}=\frac{\frac{1}{4 \pi \epsilon_{0} \mathrm{Q}}}{R^{2}}

E=\frac{\frac{1}{4 \pi \epsilon_{0} Q}}{(2 R)^{2}}

E=\frac{Q}{16 \pi \epsilon_{0} R^{2}}

For a non-conducting sphere with uniform charge, charge density is given by  

\text{Charge density} =\frac{\text { charge }}{\text { volume }}

=\frac{\frac{Q}{4}}{\frac{4}{3 \pi R^{3}}}

\text{Charge density} =\frac{3 Q}{4 \pi \mathrm{R}^{3}}

When the Radius, \mathrm{R}^{\prime}=\frac{\mathrm{R}}{2}

\mathrm{Q}^{\prime}=\text { Charge density } \times \text { Volume }

\mathrm{Q}^{\prime}=\text { Charge density } \times \frac{4}{3} \pi\left(\frac{\mathrm{R}}{2}\right)^{3}

\mathrm{Q}^{\prime}=\frac{\mathrm{Q}}{\left(\frac{4}{3 \mathrm{TR}^{3}}\right) \times\left(\frac{4}{3 \pi\left(\frac{\mathrm{R}}{2}\right) 6^{3}}\right)}

\mathrm{Q}^{\prime}=\frac{\mathrm{Q}}{8}

Therefore, the Electric field when radius is \frac{\mathrm{R}}{2},

\mathrm{E}^{\prime}=\frac{\frac{1}{4 \pi \epsilon_{0} \mathrm{Q}^{\prime}}}{\mathrm{R}^{\prime 2}}

\mathrm{E}^{\prime}=\frac{\frac{1}{4 \pi \epsilon_{0}\left(\frac{Q}{8}\right)}}{\left(\frac{R}{2}\right)^{2}}

\mathrm{E}^{\prime}=\frac{\mathrm{Q}}{8 \pi \epsilon_{0} \mathrm{R}^{2}}

\mathrm{E}^{\prime}=2\left(\frac{\mathrm{Q}}{16 \pi \epsilon_{0} \mathrm{R}^{2}}\right)

\mathrm{E}^{\prime}=2 \mathrm{E}

The electric field of the sphere will be twice of electric field when the radius is \frac{\mathrm{R}}{2}

Similar questions