Physics, asked by shaguftab044, 8 months ago

the electric potential between two points And B is ∆v .the work done W by the field in moving a charge q from A to B is:
a)W= - q∆v
b)W=q∆v
c) W = -∆v/q
d)W=∆V/q​

Answers

Answered by Anonymous
4

Answer: c

Explanation:When a free positive charge q is accelerated by an electric field, such as shown in Figure 1, it is given kinetic energy. The process is analogous to an object being accelerated by a gravitational field. It is as if the charge is going down an electrical hill where its electric potential energy is converted to kinetic energy. Let us explore the work done on a charge q by the electric field in this process, so that we may develop a definition of electric potential energy.

The electrostatic or Coulomb force is conservative, which means that the work done on q is independent of the path taken. This is exactly analogous to the gravitational force in the absence of dissipative forces such as friction. When a force is conservative, it is possible to define a potential energy associated with the force, and it is usually easier to deal with the potential energy (because it depends only on position) than to calculate the work directly.

We use the letters PE to denote electric potential energy, which has units of joules (J). The change in potential energy, ΔPE, is crucial, since the work done by a conservative force is the negative of the change in potential energy; that is, W = –ΔPE. For example, work W done to accelerate a positive charge from rest is positive and results from a loss in PE, or a negative ΔPE. There must be a minus sign in front of ΔPE to make W positive. PE can be found at any point by taking one point as a reference and calculating the work needed to move a charge to the other point.

POTENTIAL ENERGY

W = –ΔPE. For example, work W done to accelerate a positive charge from rest is positive and results from a loss in PE, or a negative ΔPE. There must be a minus sign in front of ΔPE to make W positive. PE can be found at any point by taking one point as a reference and calculating the work needed to move a charge to the other point.

Gravitational potential energy and electric potential energy are quite analogous. Potential energy accounts for work done by a conservative force and gives added insight regarding energy and energy transformation without the necessity of dealing with the force directly. It is much more common, for example, to use the concept of voltage (related to electric potential energy) than to deal with the Coulomb force directly.

Calculating the work directly is generally difficult, since W = Fd cos θ and the direction and magnitude of F can be complex for multiple charges, for odd-shaped objects, and along arbitrary paths. But we do know that, since F = qE, the work, and hence ΔPE, is proportional to the test charge q. To have a physical quantity that is independent of test charge, we define electric potential V (or simply potential, since electric is understood) to be the potential energy per unit charge  

V

=

PE

q

.

ELECTRIC POTENTIAL

This is the electric potential energy per unit charge.

V

=

PE

q

Since PE is proportional to q , the dependence on q cancels. Thus V does not depend on q. The change in potential energy ΔPE is crucial, and so we are concerned with the difference in potential or potential difference ΔV between two points, where

Δ

V

=

V

B

V

A

=

Δ

PE

q

The potential difference between points A and B, VB − VA, is thus defined to be the change in potential energy of a charge q moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the name volt (V) after Alessandro Volta.

1

V

=

1

J

C

POTENTIAL DIFFERENCE

The potential difference between points A and B, VB – VA, is defined to be the change in potential energy of a charge q moved from A to B, divided by the charge. Units of potential difference are joules per coulomb, given the name volt (V) after Alessandro Volta.

1

V

=

1

J

C

The familiar term voltage is the common name for potential difference. Keep in mind that whenever a voltage is quoted, it is understood to be the potential difference between two points. For example, every battery has two terminals, and its voltage is the potential difference between them. More fundamentally, the point you choose to be zero volts is arbitrary. This is analogous to the fact that gravitational potential energy has an arbitrary zero, such as sea level or perhaps a lecture hall floor.

In summary, the relationship between potential difference (or voltage) and electrical potential energy is given by  

Δ

V

=

Δ

PE

q

and ΔPE = qΔV.

POTENTIAL DIFFERENCE AND ELECTRICAL POTENTIAL ENERGY

The relationship between potential difference (or voltage) and electrical potential energy is given by

Δ

V

=

Δ

PE

q

and ΔPE = qΔV

Answered by maryamkhalid7659
0

Answer:

ans a

Explanation:

Against the field in which charge is moving so allot a negative sign

Similar questions