Physics, asked by varz7154, 1 month ago

The electric potential in a given region in free space is V = 3xy2 z. i) Obtain an expression for the electric field E

Answers

Answered by nirman95
21

Given:

The electric potential in a given region in free space is V = 3xy²z.

To find:

Electrostatic field ?

Calculation:

The electrostatic field intensity can be calculated using partial differentiation as follows:

 \rm \therefore\vec{E}  =  -  \bigg( \dfrac{ \partial V}{ \partial x} \hat{i} + \dfrac{ \partial V}{ \partial y} \hat{j} + \dfrac{ \partial V}{ \partial z} \hat{k} \bigg)

 \rm \implies \:  \vec{E}  =  -  \bigg \{\dfrac{ \partial (3x {y}^{2} z)}{ \partial x} \hat{i} + \dfrac{ \partial (3x {y}^{2} z)}{ \partial y} \hat{j} + \dfrac{ \partial (3x {y}^{2}z) }{ \partial z} \hat{k} \bigg \}

 \rm \implies \:  \vec{E}  =  -  \bigg\{ {y}^{2} z \hat{i}+ 6xyz \hat{j}+ 3x {y}^{2}\hat{k} \bigg \}

So, final answer is :

 \boxed{ \bf \:  \vec{E}  =  -  \bigg\{ {y}^{2} z\hat{i} + 6xyz \hat{j}+ 3x {y}^{2}\hat{k} \bigg \}}

Similar questions