Math, asked by jewel007, 1 year ago

The elevation of a tower at a station A due north of it is "α" and at station B due west of A is "β". Prove that the height of tower is "ABsinαsinβ/√sin2α-sin2β"

Answers

Answered by nithilaepn
34
Let O be the point where the tower stands.
Let A be the point due north of it and B the point due east of A.
From A the angle of elevation of the tower is α.
∴ OA / h = cot α ⇒ OA = h Cot α ----------→(1)
From B the angle of elevation of the tower is β.
∴Cot β  = OB / h ⇒ OB = h cot β -------------→(2)
Consider  ΔOAB
AB2 = OB2 - OA2
       = h2 Cotβ - h2 cot2 α
       =h2 (Cosβ / Sinβ-  Cos2 α / Sin2 α)
       =h2 (Sin2 α Cosβ -  Cos2 α Sinβ) / Sin2 α Sinβ.
       =h2 (Sin2 α (1-Sinβ) -  (1-Sin2 α) Sinβ) / Sin2 α Sinβ.
AB2 =h2 (Sin2 α -  Sinβ) / Sin2 α Sinβ.
h2  =   AB2 Sin2 α Sinβ./ (Sin2 α -  Sinβ)
h = AB Sin α Sin β./ √(Sin2 α -  Sinβ).       
Attachments:
Answered by sheela15
49
here is your correct answer
Attachments:
Similar questions