Math, asked by parneet8471, 10 hours ago

The elevation of the summit of a mountain from its foot is 45°. After ascending 2 km towards the mountain upon an incline of 30°,the elevation changes to 60°. What is the approximate height of the mountain?

Answers

Answered by mathdude500
17

\large\underline{\sf{Solution-}}

Let assume that, A be the foot and C be the top of mountain and let height of the mountain BC be h metres.

Now, ∠BAC = 45°

So, ∠ACB = 45°

This, implies AB = BC = h metres.

[ Side opposite to equal angles are equal ]

Now, After ascending 2 km towards the mountain upon an incline of 30°, the elevation changes to 60°.

Let AD = 2 km = 2000 m

Also, ∠DAB = 30° and ∠EDC = 60°.

Now, From D, drop DF and DE perpendiculars on side AB and BC.

Now, In triangle ADF

\rm \: sin30 \degree \:  =  \: \dfrac{DF}{AD}

\rm \: \dfrac{1}{2}  \:  =  \: \dfrac{DF}{2000}

\rm\implies \:DF = 1000 \: m

\rm\implies \:DF = BE = 1000 \: m

Now, In triangle ADF

\rm \: cos30 \degree = \dfrac{AF}{AD}

\rm \: \dfrac{ \sqrt{3} }{2}  \degree = \dfrac{AF}{2000}

\rm\implies \:AF = 1000 \sqrt{3}  \: m

Now,

\rm \: DE = BF = AB - AF = h - 1000 \sqrt{3} \: m

Also,

\rm \: CE = BC - BE = BC - DF = h - 1000 \: m

Now, In triangle DCE

\rm \: tan60 \degree = \dfrac{CE}{DE}

\rm \:  \sqrt{3} = \dfrac{h - 1000}{h - 1000 \sqrt{3} }

\rm \:  \sqrt{3}h - 3000 = h - 1000

\rm \:  \sqrt{3}h - h = 3000 - 1000

\rm \:  (\sqrt{3} - 1)h = 2000

\rm \: h = \dfrac{2000}{ \sqrt{3}  - 1}

So, on rationalizing the denominator, we have

\rm \: h = \dfrac{2000}{ \sqrt{3}  - 1} \times \dfrac{ \sqrt{3} + 1 }{ \sqrt{3}  + 1}

We know,

\boxed{\tt{ (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }} \\

So, using this, we get

\rm \: h = \dfrac{2000( \sqrt{3}  + 1)}{ (\sqrt{3})^{2}   - 1}

\rm \: h = \dfrac{2000( \sqrt{3}  + 1)}{ 3  - 1}

\rm \: h = \dfrac{2000( \sqrt{3}  + 1)}{2}

\rm\implies \:h = 1000( \sqrt{3} + 1) \: m \: or \:  \sqrt{3} + 1 \: km

\rm\implies \:h = 1.732 + 1 = 2.732 \: km \: (approx)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Attachments:
Answered by PopularStar
24

Solution:-

Let A be the foot and B be the summit of the mountain OB at height h.

In △AOB,

tan 45°= \sf \dfrac{OB}{OA}

1 = \sf \dfrac{OB}{OA}

OA=h

In △ACP,

sin 30°= \sf \dfrac{PC}{AP}

 \sf \dfrac{1}{2}  \sf \dfrac{PC}{2}

⇢PC=1

Also,

cos 30°= \sf \dfrac{AC}{AP}

 \sf \dfrac{√3}{2} = \sf \dfrac{AC}{2}

⇢AC=√3

Now,

h=OA

⇢h=AC+OC

⇢h=OC+√3

⇢OC=h - √3

⇢PD=h−√3

Now, in △PDB,

tan 60°= \sf \dfrac{BD}{PD}

⇢√3= \sf \dfrac{h-1}{h-√3}

⇢√3h - 3=h-1

⇢h= \sf \dfrac{2}{√3 - 1}

⇒h= √3 +1

⇒h=2.732 km

Hence, the height of the mountain is 2.732 km...

Attachments:
Similar questions