Math, asked by kotarupanagalakshmi, 1 month ago

.The end points of diameter of a circle are (-3,1) and (5,7).The radius of the circle is

Answers

Answered by FiercePrince
3

Given : The co – ordinates of end points of diameter of a circle are (-3,1 ) and (5,7) .

Need To Find : The Radius of Circle ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

☯︎⠀We've provided with the co – ordinates of end points of diameter of a circle ( i.e. (-3,1 ) and (5,7) ). We'll Find the Length of Diameter of Circle using Distance Formula .

⠀▪︎⠀We know that the Distance between two points ( x₁ , y₁ ) and ( x₂ , y₂ ) is – 

\qquad \star\:\pmb{\underline {\boxed {\sf \: Distance \:=\: \sqrt{ \Bigg( x_2 - x_1 \Bigg)^2 \: +\:\Bigg( y_2 - y_1\:\Bigg)^2}\:\:}}}\:\\\\

Where ,

  • x₁ = 3 ,
  • x₂ = 5 ,
  • y₁ = 1 &
  • y₂ = 7 .

\\\qquad \dag \underline {\frak{ Substituting \:Known \:Values \:in\:given \:Formula \:\::\:}}\\\\

:\implies \:\sf \: Distance \:=\: \sqrt{ \bigg( x_2 - x_1 \bigg)^2 \: +\:\bigg( y_2 - y_1\:\bigg)^2}\:\\\\\\

:\implies \:\sf \: Distance \:=\: \sqrt{ \bigg( 5 - ( - 3 )  \bigg)^2 \: +\:\bigg( 7 - 1 \:\bigg)^2}\:\\\\\\

:\implies \:\sf \: Distance \:=\: \sqrt{ \bigg( 5  + 3   \bigg)^2 \: +\:\bigg( 7 - 1 \:\bigg)^2}\:\\\\\\

:\implies \:\sf \: Distance \:=\: \sqrt{ \bigg( 8   \bigg)^2 \: +\:\bigg( 6 \:\bigg)^2}\:\\\\\\

:\implies \:\sf \: Distance \:=\: \sqrt{ \bigg( 64 \: +\:36 \:\bigg)}\:\\\\\\

:\implies \:\sf \: Distance \:=\: \sqrt{ \bigg( 100 \:\bigg)}\:\\\\\\

:\implies \pmb{\:\sf \: Distance \:=\: 10\:units\:}\:\\\\\\

Therefore,

⠀⠀⠀ Diameter of Circle is 10 units .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\qquad \bigstar \:\:\underline {\pmb{\sf Radius \:of\:Circle \:\::\:}}\\\\

⠀ We know , that the Radius of the Circle is the half of the Diameter , i.e. Radius = Diameter/2 .

\dashrightarrow \pmb{\sf Radius \:=\:\dfrac{Diameter}{2}\:}\\\\\\\dashrightarrow \sf Radius \:=\: \cancel{\dfrac{10}{2}}\:\\\\\\ \dashrightarrow \pmb {\underline {\boxed {\purple {\:\frak{ \:Radius \:\:=\:5\:units\:}}}}}\:\bigstar \: \\\\\\

\therefore \:\underline {\sf Hence ,\:Radius \:of\:the\:Circle \:is\:\pmb{\sf \:5\:units\:}\:.}\\

Similar questions