Math, asked by kalpitadebkrori054, 11 months ago

the ends of a diagonal of a square have coordinates (-2,p) and (p,2).Find p, if the area of the square is 40 square units.

plz answer this question quickly!!!! plz!​

Answers

Answered by Anonymous
138

Solution

Let the coordinates of diagonal be A(-2, p) and B(p, 2)

First find the length of the diagonal in terms p using Distance formula

 d =  \sqrt{ {( x_2 - x_1)}^{2} +  {( y_2 - y_1) }^{2}  }

A(-2, p) B(p, 2)

 \text{here }  \\  \quad \rightarrow x_1   =  - 2 \\ \quad \rightarrow x_2   =  p \\ \quad \rightarrow y_1   =  p \\ \quad \rightarrow y_2   =   2

Substituting the values in formula

 \implies AB =  \sqrt{ { \{( p - ( - 2) \}}^{2} +  {(2 - p) }^{2}  }

 \implies AB =  \sqrt{ { ( p  +  2) }^{2} +  {2}^{2} +  {p}^{2}  - 2(2)(p)  }

[ Because (a - b)² = a² + b² - 2ab ]

 \implies AB =  \sqrt{  {p}^{2}  +  {2}^{2} + 2(p)(2)  +  {2}^{2} +  {p}^{2}  - 2(2)(p)  }

 \implies AB =  \sqrt{2  {p}^{2}  +  4 + 4p +  4     -4p  }

 \implies AB =  \sqrt{2  {p}^{2}  +  8}

Now, Length of the diaganal of the square AB = √(2p² + 8)

Relation between area and diagonal of the square

 \text{Area of the square} =  \dfrac{(Length \ of  \ the  \ diagonal)^{2}} {2}

Given, Area of the square = 40 square units

 \implies \dfrac{  \big(\sqrt{2  {p}^{2}  +  8}  \big)^{2} }{2} = 40

 \implies 2  {p}^{2}  +  8 = 40 \times 2

 \implies 2  {p}^{2}  +  8 = 80

 \implies 2  {p}^{2}  = 80 - 8

 \implies 2  {p}^{2}  = 72

 \implies {p}^{2}  =  \dfrac{72}{2}

 \implies {p}^{2}  =  36

 \implies p  =   \pm \sqrt{36}

 \implies p  =   \pm 6

Hence, the value of p is 6 or - 6.


Rythm14: Great :P
Anonymous: Thanks :)
Similar questions