Math, asked by nickelodeon92, 11 months ago

The equation 24x2+25x−47ax−2=−8x−3−53ax−2 is true for all values of x≠2a, where a is a constant.

What is the value of a?

A) -16
B) -3
C) 3
D) 16

Answers

Answered by astha23kz
5

Answer:

–3

Step-by-step explanation:

multiply each side of the given equation by ax−2 (so you can get rid of the fraction). When you multiply each side by ax−2, you should have:

24x2+25x−47=(−8x−3)(ax−2)−53

You should then multiply (−8x−3) and (ax−2) using FOIL.

24x2+25x−47=−8ax2−3ax+16x+6−53

Then, reduce on the right side of the equation

24x2+25x−47=−8ax2−3ax+16x−47

Since the coefficients of the x2-term have to be equal on both sides of the equation, −8a=24, or a=−3.

BRAINLIEST ✌

Answered by anyBTS
5

Answer:

–3

Hope this helps you

Please Mark Brainliest

Similar questions