The equation 24x2+25x−47ax−2=−8x−3−53ax−2 is true for all values of x≠2a, where a is a constant.
What is the value of a?
A) -16
B) -3
C) 3
D) 16
Answers
Answered by
4
Answer:
B) -3
Step-by-step explanation:
multiply both sides of the given equation by ax−2. When you multiply each side by ax−2, you should have:
24x2+25x−47=(−8x−3)(ax−2)−53
You should then multiply (−8x−3) and (ax−2) using FOIL.
24x2+25x−47=−8ax2−3ax+16x+6−53
Then, reduce on the right side of the equation
24x2+25x−47=−8ax2−3ax+16x−47
Since the coefficients of the x2-term have to be equal on both sides of the equation, −8a=24, or a=−3.
so answer is -3
i hope it's help you
Answered by
0
Answer:
hlo your answer is in pic....
Attachments:
Similar questions