Math, asked by mansinagpure999, 11 months ago

The equation a sin x + b cos x = c , where | c | > root a² + b² has answer with full explanation ​

Answers

Answered by IamIronMan0
0

Answer:

a \sin(x)  + b \cos(x)  \\  =  \sqrt{ {a}^{2} +  {b}^{2}  } ( \frac{a}{\sqrt{ {a}^{2} +  {b}^{2} }} \sin(x)   +  \frac{b}{\sqrt{ {a}^{2} +  {b}^{2}  }}) \\ let \:  \: tan \: y \:  =  \frac{b}{a}  \\  = \sqrt{ {a}^{2} +  {b}^{2}  }( \sin(x)  \cos(y)  +  \cos(x)  \sin(y) ) \\  = \sqrt{ {a}^{2} +  {b}^{2}  } \sin(x + y)  \\  = c

So

 \sqrt{ {a}^{2} +  {b}^{2}  } \sin(x + y)  = c \\since \:  \:     |\sin( \theta)  |\leqslant 1 \\ \sqrt{ {a}^{2} +  {b}^{2}  } | \sin(x + y) |  =   |c|  \leqslant \sqrt{ {a}^{2} +  {b}^{2}  }

Similar questions