Math, asked by ananyasagar117, 1 year ago

The equation e^sinx - e^(-sinx)- 4 = 0 has
(a) infinite number of real roots
(b) no real roots
(c) exactly one real root
(d) exactly four real roots

Answers

Answered by Anonymous
6

HEYA \:  \\  \\ e {}^{ \sin(x) } - 1 \div e {}^{ \sin(x) }   = 4 \\  \\ put \:  \: e {}^{ \sin(x) }  = z \:  \: we \:  \: have \:  \\  \\ z {}^{2}  - 1 = 4z \\  \\ z {}^{2}  - 4z - 1 = 0 \\  \\ z = 2 +  \sqrt{5}  \:  \: or \:  \: z = 2 -  \sqrt{5}  \\  \\ e {}^{ \sin(x) }  = 2 +  \sqrt{5}  \:  \:  \: or \:  \:  \: e {}^{ \sin(x) }  = 2 -  \sqrt{5}  \\  \\ taking \:  log_{e} \: on \: both \: side \: we \: have \:  \\  \\  \sin(x)  =  log_{e}(2 +  \sqrt{5} )  \: or \:  \sin(x)  = 2 -  \sqrt{5}  \\  \\  \sin(x)  = 1.44 \:(absurd \: )  \: or \:  \:  \sin(x)  =  log_{e}( - 0.23)  \: (absurd \: ) \\  \\ so \: given \: equation \: has \: no \: real \: roots. \\ option \: b \: is \: correct

Similar questions