Math, asked by abhishek95060, 1 year ago

The equation (l-m/2)x^2-(l+m/2)x+m=0 has got two values of satisfy the equation

Answers

Answered by sprao534
40
Please see the attachment
Attachments:
Answered by sanjeevk28012
35

Given :

The quadratic equation is

(\dfrac{l-m}{2}  ) x² - (  \dfrac{l+m}{2}) x + m = 0

To Find :

The two roots satisfying this equation

Solution :

The standard quadratic equation is  a x² + b x + c = 0

Let  α , β be roots of this equation

So, sum of roots = \dfrac{-b}{a}

      product of roots = \dfrac{c}{a}

And  x = \dfrac{-b\pm \sqrt{b^{2}-4ac}}{2a}

So,    from the given equation  , a =   \dfrac{l-m}{2}     , b =  \dfrac{l+m}{2}  , c = m

i.e  b² - 4 a c =  ( \dfrac{l+m}{2} )² - 4 × (\dfrac{l-m}{2}    ) × m

                    =  \dfrac{l^{2}+m^{2}+2lm  }{4} - 2 m ( l - m )

                    = \dfrac{l^{2} + m^{2}  + 2 l m - 8 m l + 8 m^{2} }{4}

                    = \dfrac{9m^{2}+l^{2}-6lm  }{4}

                    = \dfrac{(l - 3m)^{2} }{4}

And   - b = -  ( - ( \dfrac{l+m}{2} ) )

So,     x =  \dfrac{\dfrac{l+m}{2}\pm \dfrac{l-3m}{2}}{l-m}

i.e    x = 1 ,  \dfrac{2m}{l-m}

The roots  =   1  ,  \dfrac{2m}{l-m}

Hence, The roots of equation is    1  ,  \dfrac{2m}{l-m}    Answer

Similar questions