The equation of a transverse wave travelling along a coil spring is y=4 sin π(0.010x-2t) where y and x are in cm and t in s. find the wavelength, initial phase at the origin ,speed and frequency on the wave
Answers
Answer:
tan2xtan(x+a)tan(x−a)dx
To evaluate this type of integrals, which is given in three multiples of tan together such that one angle is equals to sum of other two angles, we solve as follow.
From given statement, we have
\rm \: 2x = (x + a) + (x - a)2x=(x+a)+(x−a)
So,
\rm \: tan2x = tan[(x + a) + (x - a)]tan2x=tan[(x+a)+(x−a)]
We know,
\begin{gathered}\boxed{\tt{ tan(x + y) = \frac{tanx + tany}{1 - tanx \: tany} \: }} \\ \end{gathered}
tan(x+y)=
1−tanxtany
tanx+tany
So, using this identity, we get
\rm \: tan2x = \dfrac{tan(x + a) + tan(x - a)}{1 - tan(x + a) \: tan(x - a)} tan2x=
1−tan(x+a)tan(x−a)
tan(x+a)+tan(x−a)
\rm \: tan2x - tan2x \: tan(x + a) \: tan(x - a) = tan(x + a) + tan(x - a)tan2x−tan2xtan(x+a)tan(x−a)=tan(x+a)+tan(x−a)
\rm\implies \: tan2x \: tan(x + a) \: tan(x - a) =tan2x - tan(x + a) - tan(x - a)⟹tan2xtan(x+a)tan(x−a)=tan2x−tan(x+a)−tan(x−a)
So,
\displaystyle\int\rm tan2x \: tan(x + a) \: tan(x - a) \: dx∫tan2xtan(x+a)tan(x−a)dx
can be rewritten as
\rm \: = \: \displaystyle\int\rm \: [ tan2x - \: tan(x + a) - \: tan(x - a)] \: dx=∫[tan2x−tan(x+a)−tan(x−a)]dx
We know,
\begin{gathered}\boxed{\tt{ \displaystyle\int\rm tanx \: = \: log |secx| + c \: }} \\ \end{gathered}
∫tanx=log∣secx∣+c
So, using this result, we get
\rm \: = \: \dfrac{1}{2}log |sec2x| - log |sec(x + a)| - log |sec(x - a)| + c=
2
1
log∣sec2x∣−log∣sec(x+a)∣−log∣sec(x−a
Explanation:
The equation of a transverse wave travelling along a coil spring is y=4 sin π(0.010x-2t) where y and x are in cm and t in s. find the wavelength, initial phase at the origin ,speed and frequency on the wave