Math, asked by ajith20881, 1 year ago

The equation of hyperbola whosi foci are (-2,0) and (2,0) and eccentrity is 2 is given by

Answers

Answered by tasmiyakhan421
0

Answer:

See the attachment for full solution

Attachments:
Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eqn\:of\:hyperbola=3x^{2}-y^{2}=3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\  \tt{ :  \implies  Foci = ( \pm 2,0)} \\  \\   \tt{ : \implies Eccentricity(e) = 2} \\  \\ \red{ \underline \bold{To \: Find : }}  \\   \tt{ : \implies  Eqn \:of \: hyperbola = ?}

• According to given question :

  \circ \: \tt{Let \: eqn   \: be \:   \frac{ {x}^{2} }{ {a}^{2} }  -   \frac{ {y}^{2} }{ {b}^{2} }  = 1} -  -  -  -  - (1) \\  \\   \  \tt{: \implies Foci = ( \pm ae,0) } \\  \\   \tt{ : \implies Foci \ =  (\pm2,0)} \\  \\   \tt{ : \implies ae = 2} \\  \\    \tt{: \implies a \times 2 = 2} \\  \\    \green{ \tt{: \implies a = 1} }\\  \\  \bold{As \: we \: know \: that} \\   \tt{ : \implies  {b}^{2}  =  {a}^{2} ( {e}^{2}  - 1)} \\  \\   \tt{:  \implies  {b}^{2}  =  {1}^{2} ( {2}^{2}  - 1)} \\  \\   \tt{ : \implies   {b}^{2}  = 4 - 1} \\  \\    \tt{: \implies   {b}^{2} = 3} \\  \\  \text{Putting \: given \: values \: in \: (1)} \\  \tt{  : \implies   \frac{ {x}^{2} }{ {a}^{2} }  -  \frac{ {y}^{2} }{ {b}^{2} }  = 1} \\  \\   \green{ \tt{: \implies  \frac{ {x}^{2} }{1}  -  \frac{ {y}^{2} }{3}  = 1}} \\  \\    \green{\tt{\therefore Eqn \: of \:hyperbola  \: is \: 3{x}^{2}  -  {y}^{2}  = 3}}

Similar questions