Math, asked by pchandramouli3227, 10 months ago

the equation of line passing through (1 ,1) and (2,2) is​

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Eqn\:of\:line=x-y=0}}}

\green{\tt{\therefore{Eqn\:of\:line=x+y-4=0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given: }} \\  \tt:  \implies Points \: on \: line = (1,1) \: and \: (2,2) \\  \\ \red{\underline \bold{To \: Find: }} \\  \tt:  \implies Eqn \: of \: line = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies (y -  y_{1}) =  (\frac{ y_{2} -  y_{1} }{x_{2} -  x_{1}} )( x -  x_{1}) \\  \\ \tt:  \implies y - 1 =  (\frac{2 - 1}{2 - 1} )( x - 1) \\  \\ \tt:  \implies y - 1 = 1 \times (x - 1 ) \\  \\ \tt:  \implies  x - 1 + 1 - y = 0 \\  \\  \green{\tt:  \implies x  - y = 0} \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies (y -  y_{1}) =  (\frac{ y_{2} -  y_{1} }{x_{2} -  x_{1}} )( x -  x_{1}) \\  \\ \tt:  \implies y -2 =  (\frac{1 - 2}{ 1 - 2} )( x - 2) \\  \\ \tt:  \implies y - 2 =  - 1 \times (x - 2 ) \\  \\ \tt:  \implies   x   - 2  - 2  +  y = 0 \\  \\  \green{\tt:  \implies x   +  y   - 4= 0}

Answered by Saby123
13

 \tt {\huge {\pink{ Hello!!! }}}

 \tt {\red { Given \: - }}

The Line is passing through (1 ,1) and (2,2) .

Two Point Slope Equation :

</p><p>\tt{\purple{\implies{y \: - \: y_{1} = \dfrac{y_{2} - y_{1}}{x_{2} - x_{1} } \times x \: - \: x_{1} }}} ........(1)

Here :

</p><p>x_{1} = 1 \\ \\y_{1} = 1 \\ \\ x_{2} = 2 \\ \\ y_{2} = 2

Placing the values in the above equation and solving we get the following lines :

 \tt {\orange{ \implies { x - y = 0 }}} .......(A_{1})

 \tt {\orange{ \implies { x + y -4= 0 }}} .......(A_{2})

Similar questions