the equation of line passing through intersection of the line x-2y+5=0 and 3x +2y+7=0 and perpendicular to x-y=0
Answers
Answered by
0
Answer:
x+y+2=0
Step-by-step explanation:
X-2Y+5=0-------------------->eq(1)
3X+2Y+7=0------------------->eq(2)
perpendicular line
:.X-Y=0.
slope
ax+by+c=0
M=-a/b
line (X-Y=0)
M=-1/-1=1
:.M=1------->1st slope..
perpendicular lines implies=>product of slopes
M1M2=-1
=>1*M2=-1
=>M2=-1
X-2Y+5=0-------------------->eq(1)
3X+2Y+7=0------------------->eq(2)
cancel those 2y's
then we will get this eqn
:.4x+12=0
4x=-12
X=-3
x value substitute in eq(1)
-3x-2y+5
-2y+2=0
-2y =-2
y=1
point intersection p(-3,1)
M=-1 by seen line eqn X-Y=0
point slope
y-y1=m(x-x1)
substitute X1,y1 in point intersection (-3,1)
y-1=-1(x-(-3))
y-1=-1(x+3)
y-1=-x-3
x+y-1+3=0
by left hand side 3
x+y+2=0.
line eqn
Similar questions