The equation of motion of a projectile is 3 2 y 12x x 4 The horizontal component of velocity is 3 ms-1. What is the range of the projectile ?
Answers
Answered by
0
(b) Given y=12x−34x2,ux=3ms−1
vy=dydt=12dxdt−32xdxdt
At x=0,vy=uy=12dxdt=12ux=12×3=36ms−1
ay=ddt(dydt)=12d2xdt2−32[(dxdt)2+xd2xdt2]
But d2xdt2=ax=0. Hence
ay=−32(dxdt)2=−32u2x=−32×(3)2=−272ms−2
Range, R=2uxuyay=2×3×3627/2=16m
Alternatively : We have y=12x−34x2. When projectile again comes to ground, y=0andx=R.
0=12R−34R2⇒R=16m.
Answered by
2
Answer:
Explanation:
y = 12x - 3/4x²
the range of the projectile ---- is when the particle reaches the maximum horizontal distance ie y=0
12 x = 3/4x²
x = 16m
Similar questions