Math, asked by parvindermast, 3 months ago

The equation of pair of tangents
drawn from the point, (0, 1) to the
circle x2+ y2 - 2x+ 4y 0 is -
(1) 4x2-4y2 + 6xy + 6x +8y-4 0
(2) 4x2-4y2 +6xy-6x +8y-4 = 0
(3) 4x2-4y2+3xy 3x +2y 4 0
(4) 4x2-4y2 +6xy - 6x +8y + 4 =0
plz answer correct ​

Answers

Answered by SrijanShrivastava
2

T ^{2}  = SS _{11}

 \\ (y   - x + 2(y + 1)) ^{2}  =(5)( {x}^{2}  +  {y}^{2}  - 2x + 4y)

 \\ 9 {y}^{2}  +  {x}^{2}  + 4 - 6xy  + 12y - 4x  - 5 {x}^{2}  - 5 {y}^{2}  + 10x  - 20y= 0

  \\  - 4 {x }^{2}  + 4 {y}^{2}  - 6xy + 6x - 8y + 4 = 0

 \sf option \: (2)

 \boxed{4 {x}^{2}  -4  {y}^{2}  + 6xy - 6x + 8y - 4 = 0 \:  \:  \:  \:  \:  \:  \:  \: }

Similar questions