The equation of the circle passing through the points (-2,4) and (6,4) and
whose centre lies on the line 3x-4y-2=0 is
Answers
Let the equation of the required circle be (x – h)2 + (y – k)2 = r2.
Since the circle passes through points (-2,4) and (6,4)
(4 – h)2 + (1 – k)2 = r2 … (1)
(6 – h)2 + (4 – k)2 = r2 … (2)
Since the centre (h, k) of the circle lies on line 3x-4y -2 = 0
-2h + k = 4 … (3)
From equations (1) and (2), we obtain
(-2 – h)2 + (4 – k)2 = (6 – h)2 + (4 – k)2
⇒ 4 + 4h + h2 + 16 – 8k + k2 = 36 – 12h + h2 + 16– 8k + k2
⇒4 – 4h + 16 – 8k = 36 – 12h + 16 – 8k
⇒ -4h - 12h - 8k + 8k = 36+16-16-4
⇒-16h = 52-20
⇒-16h = 32
⇒h = -2
now substitute the value of h in equation 3
-2h + k = 4
⇒-2(-2) + k = 4
⇒ 4 + k = 4
⇒k = 4 - 4
⇒k = 0
On substituting the values of h and k in equation (1), we obtain
(4 – h)² + (1 – k)² = r² …(1)
(4 + 2)² + (1 – 0)² = r² … (1)
⇒ (6)² + (1)² = r²
⇒ 26 + 1 = r²
⇒ r² = 27
Thus, the equation of the required circle is
( x - h )² + ( y - k )² = r²
(x – [-2] )² + (y –0)² =(√27)²
x² + 4x + 4 + y² - 0y + 0 = 27
x² + y² + 4x + 4 = 27
x² + y² + 4x = 23
x² + y² + 4x - 23 = 0
Answer:
Let the equation of the required circle be (x – h)2 + (y – k)2 = r2.
Since the circle passes through points (-2,4) and (6,4)
(4 – h)2 + (1 – k)2 = r2 … (1)
(6 – h)2 + (4 – k)2 = r2 … (2)
Since the centre (h, k) of the circle lies on line 3x-4y -2 = 0
-2h + k = 4 … (3)
From equations (1) and (2), we obtain
(-2 – h)2 + (4 – k)2 = (6 – h)2 + (4 – k)2
⇒ 4 + 4h + h2 + 16 – 8k + k2 = 36 – 12h + h2 + 16– 8k + k2
⇒4 – 4h + 16 – 8k = 36 – 12h + 16 – 8k
⇒ -4h - 12h - 8k + 8k = 36+16-16-4
⇒-16h = 52-20
⇒-16h = 32
\begin{gathered} \implies \: h = \frac{32}{ - 16} \\ \end{gathered}
⟹h= 32/-16
⇒h = -2
now substitute the value of h in equation 3
-2h + k = 4
⇒-2(-2) + k = 4
⇒ 4 + k = 4
⇒k = 4 - 4
⇒k = 0
On substituting the values of h and k in equation (1), we obtain
(4 – h)² + (1 – k)² = r² …(1)
(4 + 2)² + (1 – 0)² = r² … (1)
⇒ (6)² + (1)² = r²
⇒ 26 + 1 = r²
⇒ r² = 27
Thus, the equation of the required circle is
( x - h )² + ( y - k )² = r²
(x – [-2] )² + (y –0)² =(√27)²
x² + 4x + 4 + y² - 0y + 0 = 27
x² + y² + 4x + 4 = 27
x² + y² + 4x = 23
x² + y² + 4x - 23 = 0