Math, asked by NewtonBaba420, 1 month ago


The equation of the common tangent to the Curves,
 \bf  {y}^{2}  = 16x \: \:  and \: \:  xy  =  - 4 \:  \: is

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given equation of Parabola is

\rm :\longmapsto\: {y}^{2} = 16x

We know,

If m is the slope of tangent to the Parabola is y² = 4ax, then equation of tangent is

\rm :\longmapsto\:y = mx + \dfrac{a}{m}

If we compare the given Equation of Parabola y² = 16x with y² = 4ax, we get a = 4.

So,

Equation of tangent having slope 'm' to the parabola y² = 16x is given by

\rm :\longmapsto\:y = mx + \dfrac{4}{m}

\rm :\longmapsto\:y = \dfrac{ {xm}^{2} +  4}{m}  -  - (1)

Now, for this line to be tangent to xy = - 4, we have

\rm :\longmapsto\: \dfrac{ {xm}^{2} +  4}{m} \times x =  - 4

\rm :\longmapsto\: {x}^{2} {m}^{2} + 4x =  - 4m

\rm :\longmapsto\: {m}^{2} {x}^{2} + 4x  + 4m = 0

For this line to be tangent, Discriminant = 0

  • i.e. b² - 4ac = 0

Here,

  • a = m²

  • b = 4

  • c = 4m

So, on substituting the values, we get

\rm :\longmapsto\: {4}^{2} - 4 \times 4m \times  {m}^{2}  = 0

\rm :\longmapsto\:16 - 16 {m}^{3} = 0

\rm :\longmapsto\:16 {m}^{3} = 16

\rm :\longmapsto\: {m}^{3} = 1

\bf\implies \:m = 1

On substituting the value of 'm', in equation (1), we get

\rm :\longmapsto\:y = \dfrac{ {x}(1)^{2} +  4}{1}

\rm :\longmapsto\:y = \dfrac{ {x} +  4}{1}

\rm :\longmapsto\:y = x + 4

Hence,

The equation of common tangent to

\rm :\longmapsto\: {y}^{2} = 16x

and

\rm :\longmapsto\:xy =  - 4

is

\bf :\longmapsto\:y = x + 4

Attachments:

amansharma264: Good
Answered by snas217236
1

Answer:

\large\underline{\sf{Solution-}}Solution−</p><p></p><p>Given equation of Parabola is</p><p></p><p>\rm :\longmapsto\: {y}^{2} = 16x:⟼y2=16x</p><p></p><p>We know,</p><p></p><p>If m is the slope of tangent to the Parabola is y² = 4ax, then equation of tangent is</p><p></p><p>\rm :\longmapsto\:y = mx + \dfrac{a}{m}:⟼y=mx+ma</p><p></p><p>If we compare the given Equation of Parabola y² = 16x with y² = 4ax, we get a = 4.</p><p></p><p>So,</p><p></p><p>Equation of tangent having slope 'm' to the parabola y² = 16x is given by</p><p></p><p>\rm :\longmapsto\:y = mx + \dfrac{4}{m}:⟼y=mx+m4</p><p></p><p>\rm :\longmapsto\:y = \dfrac{ {xm}^{2} + 4}{m} - - (1):⟼y=mxm2+4−−(1)</p><p></p><p>Now, for this line to be tangent to xy = - 4, we have</p><p></p><p>\rm :\longmapsto\: \dfrac{ {xm}^{2} + 4}{m} \times x = - 4:⟼mxm2+4×x=−4</p><p></p><p>\rm :\longmapsto\: {x}^{2} {m}^{2} + 4x = - 4m:⟼x2m2+4x=−4m</p><p></p><p>\rm :\longmapsto\: {m}^{2} {x}^{2} + 4x + 4m = 0:⟼m2x2+4x+4m=0</p><p></p><p>For this line to be tangent, Discriminant = 0</p><p></p><p>i.e. b² - 4ac = 0</p><p></p><p>Here,</p><p></p><p>a = m²</p><p></p><p>b = 4</p><p></p><p>c = 4m</p><p></p><p>So, on substituting the values, we get</p><p></p><p>\rm :\longmapsto\: {4}^{2} - 4 \times 4m \times {m}^{2} = 0:⟼42−4×4m×m2=0</p><p></p><p>\rm :\longmapsto\:16 - 16 {m}^{3} = 0:⟼16−16m3=0</p><p></p><p>\rm :\longmapsto\:16 {m}^{3} = 16:⟼16m3=16</p><p></p><p>\rm :\longmapsto\: {m}^{3} = 1:⟼m3=1</p><p></p><p>\bf\implies \:m = 1⟹m=1</p><p></p><p>On substituting the value of 'm', in equation (1), we get</p><p></p><p>\rm :\longmapsto\:y = \dfrac{ {x}(1)^{2} + 4}{1}:⟼y=1x(1)2+4</p><p></p><p>\rm :\longmapsto\:y = \dfrac{ {x} + 4}{1}:⟼y=1x+4</p><p></p><p>\rm :\longmapsto\:y = x + 4:⟼y=x+4</p><p></p><p>Hence,</p><p></p><p>The equation of common tangent to</p><p></p><p>\rm :\longmapsto\: {y}^{2} = 16x:⟼y2=16x</p><p></p><p>and</p><p></p><p>\rm :\longmapsto\:xy = - 4:⟼xy=−4</p><p></p><p>is</p><p></p><p>\bf :\longmapsto\:y = x + 4:⟼y=x+4</p><p></p><p>

plzmark as a brainliest answer

Similar questions