Math, asked by nandu321, 2 days ago

The equation of the directrix of the parabola x^{2}-2x-y-3=0 is​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given equation of parabola is

\rm \:  {x}^{2} - 2x - y - 3 = 0 \\

can be rewritten as

\rm \:  {x}^{2} - 2x = y + 3 \\

On adding 1 on both sides, we get

\rm \:  {x}^{2} - 2x + 1 = y + 3 + 1 \\

\rm \:  {(x - 1)}^{2} = y + 4 \\

which can be rewritten as

\rm \:  {X}^{2} = Y \\

where,

\rm \:  \:  \:  \:  \:  \: X = x - 1 \\

\rm \:  \:  \:  \:  \:  \: Y = y + 4 \\

Now, on comparing with equation of parabola

\rm \:  {X}^{2} = 4aY \\

we get

\rm \: 4a = 1 \\

\rm\implies \:a =  \dfrac{1}{4}  \\

So,

\rm \: Equation \: of \: directrix \:  is\: given \: by \\

\rm \: Y =  \:  -  \: a \\

\rm \: y + 4 =  \:  -  \:  \dfrac{1}{4}  \\

\rm \: 4y + 16 =  \:  -  \:  1  \\

\rm\implies \:\rm \: 4y + 17 =  0 \\

\rule{190pt}{2pt}

Additional Information :-

General equation of conic is

\begin{gathered}\rm \: {ax}^{2} + 2hxy + {by}^{2} + 2gx + 2fy + c = 0 \\ \end{gathered}

Nature of Conic

\begin{gathered} \\ \begin{gathered}\boxed{\begin{array}{c|c} \bf Condition & \bf Nature \: of \: conic \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf \triangle \ne \: 0, \: ab - {h}^{2} > 0 & \sf Ellipse \\ \\ \sf \triangle \ne \: 0, \: ab - {h}^{2} < 0 & \sf Hyperbola \\ \\ \sf \triangle \ne \: 0, \: ab - {h}^{2} > 0, \: a + b = 0 & \sf Hyperbola(rectangular)\\ \\ \sf \triangle \ne \: 0, \: h = 0, \: a = b & \sf Circle \end{array}} \\ \end{gathered} \\ \end{gathered}

Similar questions