the equation of the line joining the origin to the point (-4,5)
Answers
Find more:
Point A(7,-3) and B(1,9), find:
a. Slope of AB.
b. Equation of line perpendicular bisector of the line AB.
c. He value of 'p' of (-2,p) lies on it.
https://brainly.in/question/12601537#
Answer:
think your question should be:
\text{Prove that:}\displaystyle\;16\;sin10^{\circ}\;sin30^{\circ}\;sin50^{\circ}\;sin70^{\circ}=1Prove that:16sin10∘sin30∘sin50∘sin70∘=1
\text{Consider,}Consider,
\displaystyle\;16\;sin10^{\circ}\;sin30^{\circ}\;sin50^{\circ}\;sin70^{\circ}16sin10∘sin30∘sin50∘sin70∘
=\displaystyle\;16\;sin10^{\circ}(\frac{1}{2})sin50^{\circ}\;sin70^{\circ}=16sin10∘(21)sin50∘sin70∘
=\displaystyle\;8\;sin10^{\circ}\;sin50^{\circ}\;sin70^{\circ}=8sin10∘sin50∘sin70∘
=\displaystyle\;8\;sin(60^{\circ}-10^{\circ})\;sin10^{\circ}\;sin(60^{\circ}-10^{\circ})=8sin(60∘−10∘)sin10∘sin(60∘−10∘)
\text{Using,}Using,
\boxed{\bf\;sin(60^{\circ}-A)\;sinA\;sin(60^{\circ}+A)=\frac{1}{4}sin3A}sin(60∘−A)sinAsin(60∘+A)=41sin3A
=\displaystyle\;8[\frac{1}{4}sin3(10^{\circ})]=8[41sin3(10∘)]
=\displaystyle\;8[\frac{1}{4}sin30^{\circ}]=8[41sin30∘]
=\displaystyle\;8[\frac{1}{4}(\frac{1}{2})]=8[41(21)]
=\displaystyle\;8[\frac{1}{8}]=8[81]
=\displaystyle\;1=1