Math, asked by karishmaamahaja, 1 year ago

The equation of the normal at the point (2,3) on the ellipse 9x ^2+ 16y ^2=180 is

Answers

Answered by Neeleshcs
0

Answer:

Step-by-step explanation:

Attachments:
Answered by AadilAhluwalia
1

The equation of the normal is 3y - 8x + 7 = 0.

Given: The equation of the ellipse, 9x^{2} +16y^{2} =180 and

             The point ( 2,3)

To find:

         The equation of the normal.

Solution:

        We know,

            \frac{dy}{dx } = Slope of tangent

and slope of tangent = negative inverse of the slope of normal

                                                                          ║∵ the normal ⊥ tangent ║

Differentiating with respect to x,

           We get, 18x+32y\frac{dy}{dx} =0

At the point (2,3)

         The equation will be, 36+96\frac{dy}{dx} =0

                          ⇒ \frac{dy}{dx} = -36/96

   ∴ Slope of tangent = -3/8

   ∴ The slope of normal = 8/3

⇒ Equation of the normal will be,

                               ( y - 3 ) = 8/3 ( x - 3 )

                    ⇒  3y - 8x + 7 = 0 will be the equation of the normal.

Similar questions