Math, asked by Leligetgetahun, 3 months ago


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x - 4y + 3 = 0 is​

Answers

Answered by Anonymous
10

\large\sf\underline{Given:}

  • Focus ( S ) = ( 2, 3 ) and

  • Directrix ( M ) , x – 4y + 3 = 0.

\large\sf\underline{To\:find:}

  • Equation of the parabola

\large\sf\underline{Solution:}

Let us assume P (x, y) be any point on the parabola .

The distance between two points ( x₁ , y₁ ) and ( x₂ , y₂ ) is given as :

\sf\:\sqrt{(x₁- x₂)^{2}  +  {(y₁- y₂)}^{2} }

And the perpendicular distance from the point (x₁ , y₁) to the line ax + by + c = 0 is

\sf➞\:\frac{ |ay₁+ by₁ + c| }{ \sqrt{ {a}^{2}  +  {b}^{2} } }

So by equating both, we get

\sf➞\:{(x - 2)}^{2}  +  {(y - 3)}^{2} ={(  \frac{ |x - 4y + 3| }{ \sqrt{ {1}^{2}  +  {( - 4)}^{2} } }  })^{2}

\sf➞\:x^{2}-4x+4+y^{2}-6y+9= \frac{ {( |x - 4y + 3|) }^{2} }{1 + 16}

\sf➞\:x^{2}+y^{2}-4x-6y+13= \frac{( {x}^{2} + 16 {y}^{2} + 9 + 6x - 24y - 8xy)  }{17}

Upon cross multiplication, we get

\sf➞\:17 {x}^{2}  + 17 {y}^{2}  - 68x - 102y + 221={x}^{2}  + 16 {y}^{2}  + 6x - 24y - 8xy + 9

\sf➞\:16 {x}^{2}  +  {y}^{2}  + 8xy - 74x - 78y + 212 = 0

⠀⠀⠀⠀⠀─━━━━━━━━━━━━─

∴ The equation of the parabola is :

{\sf{{\purple{16 {x}^{2}  +  {y}^{2}  + 8xy - 74x - 78y + 212 = 0}}}}

⠀⠀⠀⠀⠀─━━━━━━━━━━━━─

Scroll left to right to view the answer properly !¡

!! Hope it helps !!

Similar questions