Math, asked by jayark4, 1 year ago

The equation of the straight lines whose inclination is pie/4 and x-intercept is 4 is

Answers

Answered by MaheswariS
2

\textbf{Given:}

\text{Angle of inclination, $\theta=\dfrac{\pi}{4}$}

\text{x-intercept=4}

\textbf{To find:}

\text{Equation of the line}

\textbf{Solution:}

\textbf{Slope of the line:}

m=tan\theta

m=tan\dfrac{\pi}{4}

m=1

\text{Equation of line in intercept form is}

\dfrac{x}{a}+\dfrac{y}{b}=1

\dfrac{x}{4}+\dfrac{y}{b}=1

\text{This can be written as}

\dfrac{y}{b}=-\dfrac{x}{4}+1

\implies\,y=(\dfrac{-b}{4})x+\dfrac{1}{b}

\text{Comparing with,}\bf\;y=mx+c

\dfrac{-b}{4}=m

\dfrac{-b}{4}=1

\implies\bf\,b=-4

\text{The required line is}

\dfrac{x}{4}+\dfrac{y}{-4}=1

\implies\bf\,x-y-4=0

\textbf{Answer:}

\textbf{Equation of the required line is $\bf\,x-y-4=0$}

Similar questions