The equation of the tangent to the parabola y2 = 9x which goes through the point(4,10)
Answers
Answered by
0
Answer:
x−4y+36=0
Equation of a tangent to a parabola is given by,
y=mx+
m
a
------ ( 1 )
In the given parabola, y
2
=9x
⇒ 4a=9
⇒ a=
4
9
Putting value of a in ( 1 ) we get,
y=mx+
4x
9
----- ( 2 )
As the given tangent passing through point (4,10)
∴ 10=4m+
4m
9
----- ( 2 )
⇒ 16m
2
−40m+9=0
⇒ 16m
2
−36m−4m+9=0
⇒ 4m(4m−9)−1(4m−9)=0
⇒ (4m−9)(4m−
4
1
)=0
⇒ m=
4
9
and m=
4
1
When m=
4
9
,
⇒ y=
4
9
x+1
⇒ 4y=9x+4
⇒ 9x−4y+4=0
When m=
4
1
,
⇒ y=
4
1
x+9
⇒ 4y=x+36
⇒ x−4y+36=0
∴ The required equations are 9x−4y+4=0 and x−4y+36=0
Step-by-step explanation:
answer: x-4y+36=0
Hope it helps
#Brainly
Similar questions