Physics, asked by mandycool4896, 6 months ago

The equation of trajectory of a projectile thrown from a point on the ground is y=(x−x2/40)m. If g=10ms−2. The maximum height reached is

Answers

Answered by shadowsabers03
7

The equation of trajectory of a projectile thrown with initial speed \sf{u} making an angle \theta with horizontal is,

\sf{\longrightarrow y=x\tan\theta-\dfrac{gx^2}{2u^2\cos^2\theta}}

which can be rewritten as,

\sf{\longrightarrow y=x\tan\theta\left[1-\dfrac{x}{R}\right]\quad\quad\dots(1)}

where \sf{R} is the horizontal range.

For a projectile it must be noted that,

\sf{\longrightarrow\dfrac{H}{R}=\dfrac{\tan\theta}{4}}

\sf{\longrightarrow\dfrac{1}{R}=\dfrac{\tan\theta}{4H}}

where \sf{H} is the maximum height attained by the projectile.

\sf{\longrightarrow y=x\tan\theta\left[1-\dfrac{x\tan\theta}{4H}\right]\quad\quad\dots(2)}

In the question, we're given,

\sf{\longrightarrow y=x-\dfrac{x^2}{40}}

\sf{\longrightarrow y=x\left(1-\dfrac{x}{40}\right)}

Comparing this equation with (2) we get,

\sf{\longrightarrow\tan\theta=1}

and,

\sf{\longrightarrow\dfrac{\tan\theta}{4H}=\dfrac{1}{40}}

\sf{\longrightarrow\underline{\underline{H=10\ m}}}

Hence the maximum height reached is 10 m.

Similar questions