The equation px^2-17x+6=0 has two distinct roots, α and β.Also, α/1−β/1= 13/6
Find the value of p.
Answers
Answered by
3
Answer:
Given that the eqn has two real and distinct roots
So , b^2 - 4ac > 0 (positive)
17^2 - 4*P*6 > 0
289 - 24P > 0
289 > 24 P
289/24 > 24P/24
12.04 > P
:. P is less than 12.04
Answered by
0
We can use either eqn. (\blueD1)(1)left parenthesis, start color #11accd, 1, end color #11accd, right parenthesis or eqn. (\maroonD2)(2)left parenthesis, start color #ca337c, 2, end color #ca337c, right parenthesis to find ppp.
Using eqn. (\maroonD{2})(2)left parenthesis, start color #ca337c, 2, end color #ca337c, right parenthesis, we get
\begin{aligned} \alpha\beta&=\dfrac{6}{p}\\\\ \dfrac{2}{5}\cdot3&=\dfrac{6}{p}\\\\ p&=5 \end{aligned}αβ52⋅3p=p6=p6=5
Similar questions