the equation sinx(sinx+cosx)=p has real roots . find the interval of p
Answers
Answered by
1
Sin x ( sin x + cos x ) = p
Sin² x + Sin x cos x = p
(1 - Cos 2 x ) / 2 + 1/2 Sin 2 x = p
1 - Cos 2 x + Sin 2 x = 2 p
Sin 2x - Cos 2 x = 2p - 1
Sin 2x - SIn (π/2 - 2x) = 2p - 1
the rule Sin A - Sin B = 2 Sin (A - B)/2 Cos (A+B)/2
So 2 Sin ( 2x - π/4) Cos π/4 = 2p -1
Sin (2 x - π/4) = (2p -1) / √2
Sin of an angle is always between + 1 and -1.
So -1 ≤ (2p -1)/√2 ≤ 1
2p -1 >= - √2 => p >= (1-√2)/2
and 2 p - 1 <= √2 => p <= (1+√2)/2
The limits for p , or the interval for p is : 0 ≤ p ≤ 1
=========================================
Sin x ( sin x + cos x ) = p
Sin x (sin x + Sin (90 -x) ) = p
we use the rule Sin A + Sin B = 2 Sin (A + B)/2 Cos (A-B)/2
Sin x [ 2 Sin 45⁰ Cos (x - 45⁰) ]= p
2 Sin x Cos (x - 45°) = √2 p
Sin (2 x - 45°) + Sin 45° = √2 p
Sin (2x - 45°) = √2 p - 1/√2 = (2p -1)/√2
As Sine of an angle is always between -1 and 1, we get that,
2p -1 >= - √2 => p >= (1-√2)/2
and 2 p - 1 <= √2 => p <= (1+√2)/2
====================================
if you know differentiation then:
Sin x ( sin x + cos x ) = p
Sin² x + sin x Cos x = p
Sin² x + 1/2 Sin 2x = p
dp / dx = deriviate wrt x = 2 Sin x + Cos 2 x
make the derivative = 0 to find maximum or minimum.
Hence, 2 Sin x + 1 - 2 Sin² x = 0
Sin² x - Sin x - 1/2 = 0
this is a quadratic equation : Sin x = [ 1 + - √(1+2) ] / 2
Sin x = (1 + √3 )/2 or (1 - √3)/2
= only (1 - √3)/2 as the other one is more than 1. so x is not real.
= -0.366
Then cos² x = 1 - sin² x = 1 - 1/4 [ 1 + 3 - 2√3 ]
= √3/2
Cos x = √(√3/2) = 0.9306
substitute the values in the expression to get the max or min value.
Sin² x + Sin x cos x = p
(1 - Cos 2 x ) / 2 + 1/2 Sin 2 x = p
1 - Cos 2 x + Sin 2 x = 2 p
Sin 2x - Cos 2 x = 2p - 1
Sin 2x - SIn (π/2 - 2x) = 2p - 1
the rule Sin A - Sin B = 2 Sin (A - B)/2 Cos (A+B)/2
So 2 Sin ( 2x - π/4) Cos π/4 = 2p -1
Sin (2 x - π/4) = (2p -1) / √2
Sin of an angle is always between + 1 and -1.
So -1 ≤ (2p -1)/√2 ≤ 1
2p -1 >= - √2 => p >= (1-√2)/2
and 2 p - 1 <= √2 => p <= (1+√2)/2
The limits for p , or the interval for p is : 0 ≤ p ≤ 1
=========================================
Sin x ( sin x + cos x ) = p
Sin x (sin x + Sin (90 -x) ) = p
we use the rule Sin A + Sin B = 2 Sin (A + B)/2 Cos (A-B)/2
Sin x [ 2 Sin 45⁰ Cos (x - 45⁰) ]= p
2 Sin x Cos (x - 45°) = √2 p
Sin (2 x - 45°) + Sin 45° = √2 p
Sin (2x - 45°) = √2 p - 1/√2 = (2p -1)/√2
As Sine of an angle is always between -1 and 1, we get that,
2p -1 >= - √2 => p >= (1-√2)/2
and 2 p - 1 <= √2 => p <= (1+√2)/2
====================================
if you know differentiation then:
Sin x ( sin x + cos x ) = p
Sin² x + sin x Cos x = p
Sin² x + 1/2 Sin 2x = p
dp / dx = deriviate wrt x = 2 Sin x + Cos 2 x
make the derivative = 0 to find maximum or minimum.
Hence, 2 Sin x + 1 - 2 Sin² x = 0
Sin² x - Sin x - 1/2 = 0
this is a quadratic equation : Sin x = [ 1 + - √(1+2) ] / 2
Sin x = (1 + √3 )/2 or (1 - √3)/2
= only (1 - √3)/2 as the other one is more than 1. so x is not real.
= -0.366
Then cos² x = 1 - sin² x = 1 - 1/4 [ 1 + 3 - 2√3 ]
= √3/2
Cos x = √(√3/2) = 0.9306
substitute the values in the expression to get the max or min value.
kvnmurty:
as the differential dp/dx = 0, then sin 2x + cos 2x = 0 , then sin 2x = - cos 2x = cos (pi - 2x) = sin (2x - pi/2)
Similar questions